Underwater image enhancement method via extreme enhancement and ultimate weakening

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-11-16 DOI:10.1016/j.jvcir.2024.104341
Yang Zhou , Qinghua Su , Zhongbo Hu , Shaojie Jiang
{"title":"Underwater image enhancement method via extreme enhancement and ultimate weakening","authors":"Yang Zhou ,&nbsp;Qinghua Su ,&nbsp;Zhongbo Hu ,&nbsp;Shaojie Jiang","doi":"10.1016/j.jvcir.2024.104341","DOIUrl":null,"url":null,"abstract":"<div><div>The existing histogram-based methods for underwater image enhancement are prone to over-enhancement, which will affect the analysis of enhanced images. However, an idea that achieves contrast balance by enhancing and weakening the contrast of an image can address the problem. Therefore, an underwater image enhancement method based on extreme enhancement and ultimate weakening (EEUW) is proposed in this paper. This approach comprises two main steps. Firstly, an image with extreme contrast can be achieved by applying grey prediction evolution algorithm (GPE), which is the first time that GPE is introduced into dual-histogram thresholding method to find the optimal segmentation threshold for accurate segmentation. Secondly, a pure gray image can be obtained through a fusion strategy based on the grayscale world assumption to achieve the ultimate weakening. Experiments conducted on three standard underwater image benchmark datasets validate that EEUW outperforms the 10 state-of-the-art methods in improving the contrast of underwater images.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"105 ","pages":"Article 104341"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002979","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The existing histogram-based methods for underwater image enhancement are prone to over-enhancement, which will affect the analysis of enhanced images. However, an idea that achieves contrast balance by enhancing and weakening the contrast of an image can address the problem. Therefore, an underwater image enhancement method based on extreme enhancement and ultimate weakening (EEUW) is proposed in this paper. This approach comprises two main steps. Firstly, an image with extreme contrast can be achieved by applying grey prediction evolution algorithm (GPE), which is the first time that GPE is introduced into dual-histogram thresholding method to find the optimal segmentation threshold for accurate segmentation. Secondly, a pure gray image can be obtained through a fusion strategy based on the grayscale world assumption to achieve the ultimate weakening. Experiments conducted on three standard underwater image benchmark datasets validate that EEUW outperforms the 10 state-of-the-art methods in improving the contrast of underwater images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过极限增强和终极削弱实现水下图像增强的方法
现有的基于直方图的水下图像增强方法容易造成过度增强,从而影响对增强后图像的分析。然而,通过增强和削弱图像对比度来实现对比度平衡的想法可以解决这一问题。因此,本文提出了一种基于极限增强和极限削弱(EEUW)的水下图像增强方法。这种方法包括两个主要步骤。首先,通过应用灰色预测进化算法(GPE)可以获得对比度极高的图像,这也是首次将 GPE 引入双组图阈值法中,从而找到最佳分割阈值,实现精确分割。其次,通过基于灰度世界假设的融合策略可以得到纯灰度图像,实现最终弱化。在三个标准水下图像基准数据集上进行的实验验证了 EEUW 在改善水下图像对比度方面优于 10 种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Illumination-guided dual-branch fusion network for partition-based image exposure correction HRGUNet: A novel high-resolution generative adversarial network combined with an improved UNet method for brain tumor segmentation Underwater image enhancement method via extreme enhancement and ultimate weakening Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1