Calibration of pressures measured via tubing systems: Accounting for laboratory environmental variations between tubing response measurement and wind tunnel testing
{"title":"Calibration of pressures measured via tubing systems: Accounting for laboratory environmental variations between tubing response measurement and wind tunnel testing","authors":"DongHun Yeo , Yong Chul Kim","doi":"10.1016/j.jweia.2024.105962","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate pressure measurements on structures via tubing systems during wind tunnel tests are crucial for precise estimation of wind loads. While calibration studies have traditionally focused on the contribution of tubing configuration to pressure distortion, they often overlook the effects of environmental parameter changes between the measurement of tubing response and aerodynamic pressure on structures. However, higher atmospheric pressure and lower ambient temperature can substantially increase tubing response distortion. To address this, this study introduces a dynamic calibration approach that accounts for such laboratory environmental changes. This method integrates the experimental transfer function, obtained under specific environmental conditions, with numerical estimates of the impact of environmental changes, to derive transfer functions for the desired environmental conditions. The effectiveness of this approach was validated using experimental and numerical transfer functions under two distinct environmental conditions. A case study for outdoor open-circuit laboratories revealed that neglecting environmental conditions during dynamic pressure calibrations could lead to overall average deviations in peak pressures across the channels on a building face of up to ≈ 5%, with local maximum deviations reaching ≈ 10%, respectively. Therefore, the proposed calibration method can significantly enhance the accuracy of pressure measurements via tubing systems, particularly when the tubing response and the pressures are measured under different environmental conditions.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"256 ","pages":"Article 105962"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524003258","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate pressure measurements on structures via tubing systems during wind tunnel tests are crucial for precise estimation of wind loads. While calibration studies have traditionally focused on the contribution of tubing configuration to pressure distortion, they often overlook the effects of environmental parameter changes between the measurement of tubing response and aerodynamic pressure on structures. However, higher atmospheric pressure and lower ambient temperature can substantially increase tubing response distortion. To address this, this study introduces a dynamic calibration approach that accounts for such laboratory environmental changes. This method integrates the experimental transfer function, obtained under specific environmental conditions, with numerical estimates of the impact of environmental changes, to derive transfer functions for the desired environmental conditions. The effectiveness of this approach was validated using experimental and numerical transfer functions under two distinct environmental conditions. A case study for outdoor open-circuit laboratories revealed that neglecting environmental conditions during dynamic pressure calibrations could lead to overall average deviations in peak pressures across the channels on a building face of up to ≈ 5%, with local maximum deviations reaching ≈ 10%, respectively. Therefore, the proposed calibration method can significantly enhance the accuracy of pressure measurements via tubing systems, particularly when the tubing response and the pressures are measured under different environmental conditions.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.