Dataset on soil nematode abundance and composition from invaded and non-invaded grassland and forest ecosystems in Europe

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-11-04 DOI:10.1016/j.dib.2024.111098
Andrea Čerevková , Volodimir Sarabeev , Marek Renčo
{"title":"Dataset on soil nematode abundance and composition from invaded and non-invaded grassland and forest ecosystems in Europe","authors":"Andrea Čerevková ,&nbsp;Volodimir Sarabeev ,&nbsp;Marek Renčo","doi":"10.1016/j.dib.2024.111098","DOIUrl":null,"url":null,"abstract":"<div><div>The dataset presents comprehensive information on soil nematode genera distribution in ecosystems across Slovakia, Poland, Lithuania, and Russia. Data were collected from invaded plots by invasive plants and non-invaded plots from grasslands, deciduous forests, and coniferous forest ecosystems in diverse geographical regions. Invasive plant species included in this dataset are <em>Asclepias syriaca, Fallopia japonica, Heracleum mantegazzianum, H. sosnowskyi, Impatiens parviflora</em> and <em>Solidago gigantea.</em> The soil properties such as pH, moisture content, carbon, and nitrogen levels were recorded, providing comprehensive information on soil conditions. The data collection process involved standardized soil sampling techniques across all sites, ensuring consistency and comparability. The dataset offers valuable insights into soil nematode biodiversity dynamics in response to plant species invasions in European ecosystems. Nematode genera were classified according to feeding types and colonizer-persister class. Researchers interested in soil ecology, biodiversity conservation, and invasive species management can use this dataset for various purposes. Potential reuses include comparative analyses of nematode community composition, ecological modelling to predict invasive species impacts and assessments of ecosystem health and resilience.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"Article 111098"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340924010606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The dataset presents comprehensive information on soil nematode genera distribution in ecosystems across Slovakia, Poland, Lithuania, and Russia. Data were collected from invaded plots by invasive plants and non-invaded plots from grasslands, deciduous forests, and coniferous forest ecosystems in diverse geographical regions. Invasive plant species included in this dataset are Asclepias syriaca, Fallopia japonica, Heracleum mantegazzianum, H. sosnowskyi, Impatiens parviflora and Solidago gigantea. The soil properties such as pH, moisture content, carbon, and nitrogen levels were recorded, providing comprehensive information on soil conditions. The data collection process involved standardized soil sampling techniques across all sites, ensuring consistency and comparability. The dataset offers valuable insights into soil nematode biodiversity dynamics in response to plant species invasions in European ecosystems. Nematode genera were classified according to feeding types and colonizer-persister class. Researchers interested in soil ecology, biodiversity conservation, and invasive species management can use this dataset for various purposes. Potential reuses include comparative analyses of nematode community composition, ecological modelling to predict invasive species impacts and assessments of ecosystem health and resilience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧洲已入侵和未入侵草地和森林生态系统土壤线虫丰度和组成数据集
该数据集全面介绍了斯洛伐克、波兰、立陶宛和俄罗斯生态系统中土壤线虫属的分布情况。数据收集自不同地理区域的入侵植物入侵地块和非入侵地块,包括草地、落叶林和针叶林生态系统。数据集中的入侵植物物种包括 Asclepias syriaca、Fallopia japonica、Heracleum mantegazzianum、H. sosnowskyi、Impatiens parviflora 和 Solidago gigantea。记录的土壤特性包括 pH 值、含水量、碳含量和氮含量,从而提供有关土壤条件的全面信息。数据收集过程涉及所有地点的标准化土壤取样技术,确保了一致性和可比性。该数据集为了解欧洲生态系统中植物物种入侵时土壤线虫的生物多样性动态提供了宝贵的信息。线虫属按照取食类型和定植者-传播者类别进行了分类。对土壤生态学、生物多样性保护和入侵物种管理感兴趣的研究人员可将该数据集用于多种用途。潜在的再利用包括线虫群落组成的比较分析、预测入侵物种影响的生态建模以及生态系统健康和恢复力评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Characterization of the complete mitogenome data of collared peccary, Dicotyles tajacu (Linnaeus, 1758) (Suina: Tayassuidae) from Ucayali, Peru Microbial community assembly across agricultural soil mineral mesocosms revealed by 16S rRNA gene amplicon sequencing data Climate impact dataset of 1233 ingredients to promote sustainability of food service operators in Finland BD-freshwater-fish: An image dataset from Bangladesh for AI-powered automatic fish species classification and detection toward smart aquaculture Interactive plant growth regulator and fertilizer application dataset on growth and yield attributes of tomato (Solanum lycopersicum L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1