{"title":"A feasibility restoration particle swarm optimizer with chaotic maps for two-stage fixed-charge transportation problems","authors":"Shivani, Dikshit Chauhan, Deepika Rani","doi":"10.1016/j.swevo.2024.101776","DOIUrl":null,"url":null,"abstract":"<div><div>This paper delves into solving the two-stage non-linear fixed-charge transportation problem (two-stage NFCTP), where each arc is associated with fixed and variable costs that increase proportionally to the square of the units transported. The presence of fixed charges and non-linear components categorizes this problem as <span><math><mrow><mi>N</mi><mi>P</mi><mo>−</mo></mrow></math></span>hard, leading to computational challenges, inefficiencies, and the risk of local optima. To address these challenges, a feasibility restoration particle swarm optimizer with chaotic maps (CEPSO) is presented. The proposed algorithm introduces <strong>(i)</strong> non-linear adaptive inertia weight and acceleration coefficients to maintain better exploration and exploitation rates during the search. <strong>(ii)</strong> Ten chaotic maps are integrated into the acceleration coefficients to enhance optimization capabilities further. <strong>(iii)</strong> Feasibility restoration mechanisms, including constraint compliance adjustment and ratio adjustment procedures, are incorporated to ensure the feasibility of solutions generated by CEPSO. The algorithm’s performance is evaluated across small and large-scale NFCTPs, ranging from 35 to 1044 dimensions, and compared to existing PSO variants using various evaluation metrics. Experimental analyses demonstrate CEPSO’s superior optimization performance for two-stage NFCTPs, positioning it as an advanced framework in this domain and contributing to the novelty of this study. The related codes can be found using this link: <span><span>https://github.com/ChauhanDikshit</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101776"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224003146","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper delves into solving the two-stage non-linear fixed-charge transportation problem (two-stage NFCTP), where each arc is associated with fixed and variable costs that increase proportionally to the square of the units transported. The presence of fixed charges and non-linear components categorizes this problem as hard, leading to computational challenges, inefficiencies, and the risk of local optima. To address these challenges, a feasibility restoration particle swarm optimizer with chaotic maps (CEPSO) is presented. The proposed algorithm introduces (i) non-linear adaptive inertia weight and acceleration coefficients to maintain better exploration and exploitation rates during the search. (ii) Ten chaotic maps are integrated into the acceleration coefficients to enhance optimization capabilities further. (iii) Feasibility restoration mechanisms, including constraint compliance adjustment and ratio adjustment procedures, are incorporated to ensure the feasibility of solutions generated by CEPSO. The algorithm’s performance is evaluated across small and large-scale NFCTPs, ranging from 35 to 1044 dimensions, and compared to existing PSO variants using various evaluation metrics. Experimental analyses demonstrate CEPSO’s superior optimization performance for two-stage NFCTPs, positioning it as an advanced framework in this domain and contributing to the novelty of this study. The related codes can be found using this link: https://github.com/ChauhanDikshit.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.