{"title":"Reconstruction of implicit surfaces from fluid particles using convolutional neural networks","authors":"C. Zhao, T. Shinar, C. Schroeder","doi":"10.1111/cgf.15181","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this paper, we present a novel network-based approach for reconstructing signed distance functions from fluid particles. The method uses a weighting kernel to transfer particles to a regular grid, which forms the input to a convolutional neural network. We propose a regression-based regularization to reduce surface noise without penalizing high-curvature features. The reconstruction exhibits improved spatial surface smoothness and temporal coherence compared with existing state of the art surface reconstruction methods. The method is insensitive to particle sampling density and robustly handles thin features, isolated particles, and sharp edges.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15181","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15181","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a novel network-based approach for reconstructing signed distance functions from fluid particles. The method uses a weighting kernel to transfer particles to a regular grid, which forms the input to a convolutional neural network. We propose a regression-based regularization to reduce surface noise without penalizing high-curvature features. The reconstruction exhibits improved spatial surface smoothness and temporal coherence compared with existing state of the art surface reconstruction methods. The method is insensitive to particle sampling density and robustly handles thin features, isolated particles, and sharp edges.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.