Christoph Böttner, Jasper J. L. Hoffmann, Daniel Unverricht, Mark Schmidt, Timo Spiegel, Jacob Geersen, Thomas Harald Müller, Jens Karstens, Katrine Juul Andresen, Lasse Sander, Jens Schneider von Deimling, Christopher Schmidt
{"title":"The Enigmatic Pockmarks of the Sandy Southeastern North Sea","authors":"Christoph Böttner, Jasper J. L. Hoffmann, Daniel Unverricht, Mark Schmidt, Timo Spiegel, Jacob Geersen, Thomas Harald Müller, Jens Karstens, Katrine Juul Andresen, Lasse Sander, Jens Schneider von Deimling, Christopher Schmidt","doi":"10.1029/2024GC011837","DOIUrl":null,"url":null,"abstract":"<p>Natural seafloor depressions, known as pockmarks, are common subaqueous geomorphological features found from the deep ocean trenches to shallow lakes. Pockmarks can form rapidly or over millions of years and have a large variety of shapes created and maintained by a large variety of mechanisms. In the sandy sediments of the southeastern North Sea, abundant shallow pockmarks are ubiquitous and occur at shallow water depths (<50 m). Their formation has previously been linked to methane seepage from the seafloor. Here, we characterize over 50,000 pockmarks based on their morphology, geochemical signature, and the subsurface pre-conditions using a new integrated geoscientific data set, combining geophysical and sedimentological data with geochemical porewater and oceanographic analysis. We test whether the methane seepage is indeed responsible for pockmark formation. However, our data suggest that neither the seepage of light hydrocarbons nor groundwater is driving pockmark formation. Because of this lack of evidence for fluid seepage, we favor the previously suggested biotic formation but also discuss positive feedback mechanisms in ocean bottom currents as a formation process. Based on a comparison of pockmarks to the central and southeastern North Sea, we find that local lithology significantly affects pockmark morphology. Muddy lithologies favor the formation of larger, long-lived structures, while sandy lithologies lead to short-lived, small-scale structures that are large in area but with shallow incision depth. We conclude that pockmarks in sandy environments might have been overlooked globally due to their shallow incision depth and recommend reevaluating the role of hydrocarbon ebullition in pockmark formation.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011837","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Natural seafloor depressions, known as pockmarks, are common subaqueous geomorphological features found from the deep ocean trenches to shallow lakes. Pockmarks can form rapidly or over millions of years and have a large variety of shapes created and maintained by a large variety of mechanisms. In the sandy sediments of the southeastern North Sea, abundant shallow pockmarks are ubiquitous and occur at shallow water depths (<50 m). Their formation has previously been linked to methane seepage from the seafloor. Here, we characterize over 50,000 pockmarks based on their morphology, geochemical signature, and the subsurface pre-conditions using a new integrated geoscientific data set, combining geophysical and sedimentological data with geochemical porewater and oceanographic analysis. We test whether the methane seepage is indeed responsible for pockmark formation. However, our data suggest that neither the seepage of light hydrocarbons nor groundwater is driving pockmark formation. Because of this lack of evidence for fluid seepage, we favor the previously suggested biotic formation but also discuss positive feedback mechanisms in ocean bottom currents as a formation process. Based on a comparison of pockmarks to the central and southeastern North Sea, we find that local lithology significantly affects pockmark morphology. Muddy lithologies favor the formation of larger, long-lived structures, while sandy lithologies lead to short-lived, small-scale structures that are large in area but with shallow incision depth. We conclude that pockmarks in sandy environments might have been overlooked globally due to their shallow incision depth and recommend reevaluating the role of hydrocarbon ebullition in pockmark formation.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.