Eleonora Bonaventura, Daya. S. Dhungana, Chiara Massetti, Jacopo Pedrini, Carlo Grazianetti, Christian Martella, Fabio Pezzoli, Alessandro Molle, Emiliano Bonera
{"title":"Effective Out-Of-Plane Thermal Conductivity of Silicene by Optothermal Raman Spectroscopy (Advanced Optical Materials 33/2024)","authors":"Eleonora Bonaventura, Daya. S. Dhungana, Chiara Massetti, Jacopo Pedrini, Carlo Grazianetti, Christian Martella, Fabio Pezzoli, Alessandro Molle, Emiliano Bonera","doi":"10.1002/adom.202470107","DOIUrl":null,"url":null,"abstract":"<p><b>Thermal Conductivity of Silicene by Optothermal Raman Spectroscopy</b></p><p>Silicene, the silicon analog of graphene, is a promising material both for electronics and thermoelectrics. In article number 2401466, Eleonora Bonaventura, Alessandro Molle, Emiliano Bonera, and co-workers use Raman spectroscopy as a local heat probe to determine the experimental values of the thermal conductivity and interface thermal conductance by embodying the silicene nanosheet in an atomically scaled heterostructure layout.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 33","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470107","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal Conductivity of Silicene by Optothermal Raman Spectroscopy
Silicene, the silicon analog of graphene, is a promising material both for electronics and thermoelectrics. In article number 2401466, Eleonora Bonaventura, Alessandro Molle, Emiliano Bonera, and co-workers use Raman spectroscopy as a local heat probe to determine the experimental values of the thermal conductivity and interface thermal conductance by embodying the silicene nanosheet in an atomically scaled heterostructure layout.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.