Dicyanocarbene-Induced Metal-Free Efficient Quinoidization for the Development of Fused N-Type Organic Semiconductors.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-25 DOI:10.1002/anie.202419318
Runshi Wu, Fei Huang, Renjie Xu, Wuyue Liu, Cheng Zhang, Xiaozhang Zhu
{"title":"Dicyanocarbene-Induced Metal-Free Efficient Quinoidization for the Development of Fused N-Type Organic Semiconductors.","authors":"Runshi Wu, Fei Huang, Renjie Xu, Wuyue Liu, Cheng Zhang, Xiaozhang Zhu","doi":"10.1002/anie.202419318","DOIUrl":null,"url":null,"abstract":"<p><p>Dicyanomethylene-terminated quinoidal materials are promising n-type organic semiconductors featuring excellent electron mobilities and air stability. Traditional synthetic methods of these materials such as Takahashi reaction, require the use of expensive palladium catalyst and halogenated substrates. However, for electron-rich fused aromatic compounds, the poor stability after halogenation renders their halogenated derivatives unsuitable as reaction precursors. To address this issue, we present a new metal-free synthetic approach using 2-(dimethylsulfaneylidene)malononitrile as the quinoidization reagent, which is successfully applied to various electron-rich fused aromatic compounds, leading to the corresponding quinoidal compounds with high yields up to 94%. We proposed the reaction mechanism, and investigated the physical properties of four fused quinoidal materials based on highly electron-rich fused aromatic compounds, which are scarce to be synthesized by the traditional method. Furthermore, these fused quinoidal materials were utilized in field-effect transistors, achieving high electron mobilities up to 1.33 cm2 V-1 s-1. We provide an effective synthetic approach to expand the library of high-performance n-type small-molecule semiconductors.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202419318"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419318","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dicyanomethylene-terminated quinoidal materials are promising n-type organic semiconductors featuring excellent electron mobilities and air stability. Traditional synthetic methods of these materials such as Takahashi reaction, require the use of expensive palladium catalyst and halogenated substrates. However, for electron-rich fused aromatic compounds, the poor stability after halogenation renders their halogenated derivatives unsuitable as reaction precursors. To address this issue, we present a new metal-free synthetic approach using 2-(dimethylsulfaneylidene)malononitrile as the quinoidization reagent, which is successfully applied to various electron-rich fused aromatic compounds, leading to the corresponding quinoidal compounds with high yields up to 94%. We proposed the reaction mechanism, and investigated the physical properties of four fused quinoidal materials based on highly electron-rich fused aromatic compounds, which are scarce to be synthesized by the traditional method. Furthermore, these fused quinoidal materials were utilized in field-effect transistors, achieving high electron mobilities up to 1.33 cm2 V-1 s-1. We provide an effective synthetic approach to expand the library of high-performance n-type small-molecule semiconductors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双氰基碳化物诱导的无金属高效醌化作用,用于开发融合 N 型有机半导体。
以二氰亚甲基为端基的醌类材料是一种前景广阔的 n 型有机半导体,具有出色的电子迁移率和空气稳定性。这些材料的传统合成方法(如高桥反应)需要使用昂贵的钯催化剂和卤化基质。然而,对于富电子融合芳香族化合物来说,卤化后的稳定性较差,因此其卤代衍生物不适合用作反应前体。为了解决这个问题,我们提出了一种新的无金属合成方法,以 2-(二甲基亚磺酰基)丙二腈作为醌化试剂,成功地应用于多种富电子融合芳香化合物,得到了相应的醌类化合物,产率高达 94%。我们提出了四种基于高富电子融合芳香化合物的融合醌族材料的反应机理,并对其物理性质进行了研究。此外,这些融合醌类化合物被应用于场效应晶体管,实现了高达 1.33 cm2 V-1 s-1 的电子迁移率。我们为扩大高性能 n 型小分子半导体库提供了一种有效的合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research Unveiling the Structure-Fluorogenic Property Relationship of Seoul-Fluor-Derived Bioorthogonal Tetrazine Probes Quantitative Formation of Octa-substituted Cyclobutanes by the [2+2] Photocycloaddition of Stiff-stilbenes Benzothiadiazole-Fused Cyanoindone: A Superior Building Block for Designing Ultra-Narrow Bandgap Electron Acceptor with Long-Range Ordered Stacking Selection of Plastic-Binding DNA Aptamers for Microplastics Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1