{"title":"MiR-185-5p is Involved in Regulating the Abnormal Proliferation of Retinal Microvascular Endothelial Cells via Targeting CXCR4.","authors":"Xiaoxia Wen, Yunxia Tang, Hongjian Guo","doi":"10.1080/02713683.2024.2430224","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to explore the expression profile of miR-185-5p in proliferative DR (PDR), and further evaluate its diagnostic value and possible mechanism of miR-185-5p in PDR.</p><p><strong>Methods: </strong>The level of miR-185-5p was detected by qRT-PCR. The ROC curve was established to estimate the diagnostic ability of miR-185-5p. Transwell experiment and cell counting kit-8 (CCK-8) assays were conducted to assess the effect of miR-185-5p on the migration and proliferation of human retinal endothelial cells (HRECs) induced by high glucose. Enzyme linked immunosorbent assay (ELISA) was used to detect the concentrations of inflammatory factors. The luciferase reporter gene experiment was used to prove the interaction between miR-185-5p and CXCR4.</p><p><strong>Results: </strong>Compared to the control group, the expression of miR-185-5p was significantly up-regulated in both the type 2 diabetes mellitus (T2DM) group and the PDR groups, with higher levels in the PDR group than in the T2DM group. The ROC curve reveals that serum miR-185-5p can distinguish PDR patients from T2DM patients. MiR-185-5p levels in HRECs increased significantly after high glucose induction. High glucose induction also promoted the migration, proliferation and inflammation response of HRECs. However, when the intracellular miR-185-5p level was down-regulated by miR-185-5p inhibitor transfection, these effects were inhibited. The luciferase reporter gene assay showed that miR-185-5p directly targets CXCR4.</p><p><strong>Conclusion: </strong>The expression of miR-185-5p is out of balance in PDR and it may be involved in regulating the migration and proliferation of HRECs by regulating CXCR4.</p>","PeriodicalId":10782,"journal":{"name":"Current Eye Research","volume":" ","pages":"1-10"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Eye Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02713683.2024.2430224","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to explore the expression profile of miR-185-5p in proliferative DR (PDR), and further evaluate its diagnostic value and possible mechanism of miR-185-5p in PDR.
Methods: The level of miR-185-5p was detected by qRT-PCR. The ROC curve was established to estimate the diagnostic ability of miR-185-5p. Transwell experiment and cell counting kit-8 (CCK-8) assays were conducted to assess the effect of miR-185-5p on the migration and proliferation of human retinal endothelial cells (HRECs) induced by high glucose. Enzyme linked immunosorbent assay (ELISA) was used to detect the concentrations of inflammatory factors. The luciferase reporter gene experiment was used to prove the interaction between miR-185-5p and CXCR4.
Results: Compared to the control group, the expression of miR-185-5p was significantly up-regulated in both the type 2 diabetes mellitus (T2DM) group and the PDR groups, with higher levels in the PDR group than in the T2DM group. The ROC curve reveals that serum miR-185-5p can distinguish PDR patients from T2DM patients. MiR-185-5p levels in HRECs increased significantly after high glucose induction. High glucose induction also promoted the migration, proliferation and inflammation response of HRECs. However, when the intracellular miR-185-5p level was down-regulated by miR-185-5p inhibitor transfection, these effects were inhibited. The luciferase reporter gene assay showed that miR-185-5p directly targets CXCR4.
Conclusion: The expression of miR-185-5p is out of balance in PDR and it may be involved in regulating the migration and proliferation of HRECs by regulating CXCR4.
期刊介绍:
The principal aim of Current Eye Research is to provide rapid publication of full papers, short communications and mini-reviews, all high quality. Current Eye Research publishes articles encompassing all the areas of eye research. Subject areas include the following: clinical research, anatomy, physiology, biophysics, biochemistry, pharmacology, developmental biology, microbiology and immunology.