Functional improvements in β-conglycinin by preparing bioconjugates with carboxymethyl cellulose.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cytotechnology Pub Date : 2025-02-01 Epub Date: 2024-11-21 DOI:10.1007/s10616-024-00664-9
Yui Hataishi, Aya Tanaka, Misaki Ishizuka, Hibine Mizobuchi, Tadashi Yoshida, Makoto Hattori
{"title":"Functional improvements in β-conglycinin by preparing bioconjugates with carboxymethyl cellulose.","authors":"Yui Hataishi, Aya Tanaka, Misaki Ishizuka, Hibine Mizobuchi, Tadashi Yoshida, Makoto Hattori","doi":"10.1007/s10616-024-00664-9","DOIUrl":null,"url":null,"abstract":"<p><p>β-Conglycinin was conjugated with carboxymethyl cellulose (CMC) by using water-soluble carbodiimide to improve its function. Two kinds of CMC differing in average molecular weight (about 1 kDa and 90 kDa) were used to investigate the relationship between molecular weight of conjugated saccharide and saccharide content in the conjugates and degree of functional changes in β-conglycinin. The β-conglycinin-CMC conjugates were purified by dialysis using a dialysis membrane whose molecular weight cutoff is 100 kDa. Composition of the β-conglycinin-low molecular weight (LMW) CMC and β-conglycinin-high molecular weight (HMW) CMC was β-conglycinin: CMC = 1:3.3 and 1:2.1 (weight ratio) respectively which was confirmed by BCA method and phenol sulfuric acid method. Conjugation was confirmed by SDS-PAGE with CBB. Solubility of β-conglycinin in the range of pH4.0-7.0 was much improved by conjugation with both LMW and HMW CMC. Emulsifying property of β-conglycinin at pH5.0 and pH7.0 was much improved by conjugation with HMW CMC and greater improvement was achieved by conjugation with LMW CMC. Immunogenicity of β-conglycinin was decreased by conjugation with LMW CMC.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 1","pages":"6"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00664-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

β-Conglycinin was conjugated with carboxymethyl cellulose (CMC) by using water-soluble carbodiimide to improve its function. Two kinds of CMC differing in average molecular weight (about 1 kDa and 90 kDa) were used to investigate the relationship between molecular weight of conjugated saccharide and saccharide content in the conjugates and degree of functional changes in β-conglycinin. The β-conglycinin-CMC conjugates were purified by dialysis using a dialysis membrane whose molecular weight cutoff is 100 kDa. Composition of the β-conglycinin-low molecular weight (LMW) CMC and β-conglycinin-high molecular weight (HMW) CMC was β-conglycinin: CMC = 1:3.3 and 1:2.1 (weight ratio) respectively which was confirmed by BCA method and phenol sulfuric acid method. Conjugation was confirmed by SDS-PAGE with CBB. Solubility of β-conglycinin in the range of pH4.0-7.0 was much improved by conjugation with both LMW and HMW CMC. Emulsifying property of β-conglycinin at pH5.0 and pH7.0 was much improved by conjugation with HMW CMC and greater improvement was achieved by conjugation with LMW CMC. Immunogenicity of β-conglycinin was decreased by conjugation with LMW CMC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过与羧甲基纤维素制备生物共轭物改善β-红霉素的功能。
利用水溶性碳二亚胺将β-红霉素与羧甲基纤维素(CMC)共轭,以改善其功能。采用两种平均分子量不同的 CMC(约 1 kDa 和 90 kDa),研究共轭糖分子量和共轭物中糖含量与 β-红景天素功能变化程度的关系。使用分子量截止值为 100 kDa 的透析膜,通过透析纯化了 β-共轭糖蛋白-CMC 结合物。β-红霉素-低分子量(LMW)CMC 和 β-红霉素-高分子量(HMW)CMC 的组成为 β-红霉素:经 BCA 法和酚硫酸法证实,CMC=1:3.3 和 1:2.1(重量比)。与 CBB 的共轭作用通过 SDS-PAGE 得到证实。与 LMW 和 HMW CMC 共轭后,β-红景天苷在 pH4.0-7.0 范围内的溶解度大大提高。在 pH5.0 和 pH7.0 时,与 HMW CMC 共轭可大大改善 β-丛霉素的乳化性能,而与 LMW CMC 共轭则改善更大。与 LMW CMC 共轭可降低 β-红霉素的免疫原性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
期刊最新文献
Enhancing monoclonal antibody production efficiency using CHO-MK cells and specific media in a conventional fed-batch culture. IBS008738, a TAZ activator, facilitates muscle repair and inhibits muscle injury in a mouse model of sport-induced injury. Yinjia pills inhibits the malignant biological behavior of HeLa cells through PKM2-medicated inhibition of JAK/STAT3 pathway. Functional improvements in β-lactoglobulin by conjugation with high methoxy pectin by the Maillard reaction. Etomidate suppresses proliferation, migration, invasion, and glycolysis in esophageal cancer cells via PI3K/AKT pathway inhibition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1