Zhengping Hu, Issahy Cano, Fengyang Lei, Jie Liu, Ramon Bossardi Ramos, Harper Gordon, Eleftherios I Paschalis, Magali Saint-Geniez, Yin Shan Eric Ng, Patricia A D'Amore
{"title":"Loss of the Endothelial Glycocalyx Component EMCN Leads to Glomerular Impairment.","authors":"Zhengping Hu, Issahy Cano, Fengyang Lei, Jie Liu, Ramon Bossardi Ramos, Harper Gordon, Eleftherios I Paschalis, Magali Saint-Geniez, Yin Shan Eric Ng, Patricia A D'Amore","doi":"10.1161/CIRCRESAHA.124.325218","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>EMCN (endomucin), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of VEGF (vascular endothelial growth factor) activity through modulating VEGFR2 (VEGF receptor 2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model.</p><p><strong>Methods: </strong>Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was used to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, whereas urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, and albumin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a noninvasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA sequencing. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis. Protein levels of EMCN, albumin, and podocin were quantified by Western blot.</p><p><strong>Results: </strong>The EMCN<sup>-/-</sup> mice exhibited increased infiltration of CD45<sup>+</sup> cells, with an increased proportion of Ly6G<sup>high</sup>Ly6C<sup>high</sup> myeloid cells and higher VCAM-1 (vascular cell adhesion molecule 1) expression. EMCN<sup>-/-</sup> mice displayed albuminuria with increased albumin in the Bowman's space compared with the EMCN<sup>+/+</sup> littermates. Glomeruli in EMCN<sup>-/-</sup> mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA sequencing of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm.</p><p><strong>Conclusion: </strong>Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":" ","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.325218","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: EMCN (endomucin), an endothelial-specific glycocalyx component, was found to be highly expressed by the endothelium of the renal glomerulus. We reported an anti-inflammatory role of EMCN and its involvement in the regulation of VEGF (vascular endothelial growth factor) activity through modulating VEGFR2 (VEGF receptor 2) endocytosis. The goal of this study is to investigate the phenotypic and functional effects of EMCN deficiency using the first global EMCN knockout mouse model.
Methods: Global EMCN knockout mice were generated by crossing EMCN-floxed mice with ROSA26-Cre mice. Flow cytometry was used to analyze infiltrating myeloid cells in the kidneys. The ultrastructure of the glomerular filtration barrier was examined by transmission electron microscopy, whereas urinary albumin, creatinine, and total protein levels were analyzed from freshly collected urine samples. Expression and localization of EMCN, EGFP, CD45, CD31, CD34, podocin, and albumin were examined by immunohistochemistry. Mice were weighed regularly, and their systemic blood pressure was measured using a noninvasive tail-cuff system. Glomerular endothelial cells and podocytes were isolated by fluorescence-activated cell sorting for RNA sequencing. Transcriptional profiles were analyzed to identify differentially expressed genes in both endothelium and podocytes, followed by gene ontology analysis. Protein levels of EMCN, albumin, and podocin were quantified by Western blot.
Results: The EMCN-/- mice exhibited increased infiltration of CD45+ cells, with an increased proportion of Ly6GhighLy6Chigh myeloid cells and higher VCAM-1 (vascular cell adhesion molecule 1) expression. EMCN-/- mice displayed albuminuria with increased albumin in the Bowman's space compared with the EMCN+/+ littermates. Glomeruli in EMCN-/- mice revealed fused and effaced podocyte foot processes and disorganized endothelial fenestrations. We found no significant difference in blood pressure between EMCN knockout mice and their wild-type littermates. RNA sequencing of glomerular endothelial cells revealed downregulation of cell-cell adhesion and MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-regulated kinase) pathways, along with glycocalyx and extracellular matrix remodeling. In podocytes, we observed reduced VEGF signaling and alterations in cytoskeletal organization. Notably, there was a significant decrease in both mRNA and protein levels of podocin, a key component of the slit diaphragm.
Conclusion: Our study demonstrates a critical role of the endothelial marker EMCN in supporting normal glomerular filtration barrier structure and function by maintaining glomerular endothelial tight junction and homeostasis and podocyte function through endothelial-podocyte crosstalk.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.