A scientometric and visualization analysis of 3D printing scaffolds for vascularized bone tissue engineering over the last decade.

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING Regenerative Therapy Pub Date : 2024-11-08 eCollection Date: 2024-06-01 DOI:10.1016/j.reth.2024.10.013
Siyang Cao, Yihao Wei, Yaohang Yue, Deli Wang, Ao Xiong, Jun Yang, Hui Zeng
{"title":"A scientometric and visualization analysis of 3D printing scaffolds for vascularized bone tissue engineering over the last decade.","authors":"Siyang Cao, Yihao Wei, Yaohang Yue, Deli Wang, Ao Xiong, Jun Yang, Hui Zeng","doi":"10.1016/j.reth.2024.10.013","DOIUrl":null,"url":null,"abstract":"<p><p>The introduction of three-dimensional (3D) printing scaffolds has emerged as an effective approach to achieving satisfactory revascularization for bone tissue engineering (BTE). However, there is a notable absence of analytical and descriptive investigations concerning the trajectory, essential research directions, current research scenario, pivotal investigative focuses, and forthcoming perspectives. Hence, the objective of this research is to offer a thorough overview of the advancements achieved in 3D printing structures for vascularized BTE within the last 10 years. Information extracted from the Web of Science repository spans from January 1, 2014, to April 1, 2024. Utilizing advanced analytical instruments, we conducted comprehensive scientometric and visual analyses. The findings underscore the predominant influence of China, representing 59.62 % of the overall publications and playing a pivotal role in shaping research within this field. Notable productivity was evident at various institutions, including Shanghai Jiao Tong University, Chinese Academy of Sciences, and Sichuan University. Wang Jinwu and Wu Chengtie stand out as the most prolific contributors in this domain. The highest number of publications in this area was contributed by the journal <i>Advanced Healthcare Materials</i>. In this study, osteogenesis imperfecta, osteosarcoma, fractures, osteonecrosis, and cartilage diseases were identified as the most significant disorders investigated in this research area. By providing a comprehensive scientometric assessment, this study benefits both experienced researchers and newcomers alike, offering prompt access to essential information and fostering the extraction of innovative concepts within this specific field.</p>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"26 ","pages":"1099-1116"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.reth.2024.10.013","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of three-dimensional (3D) printing scaffolds has emerged as an effective approach to achieving satisfactory revascularization for bone tissue engineering (BTE). However, there is a notable absence of analytical and descriptive investigations concerning the trajectory, essential research directions, current research scenario, pivotal investigative focuses, and forthcoming perspectives. Hence, the objective of this research is to offer a thorough overview of the advancements achieved in 3D printing structures for vascularized BTE within the last 10 years. Information extracted from the Web of Science repository spans from January 1, 2014, to April 1, 2024. Utilizing advanced analytical instruments, we conducted comprehensive scientometric and visual analyses. The findings underscore the predominant influence of China, representing 59.62 % of the overall publications and playing a pivotal role in shaping research within this field. Notable productivity was evident at various institutions, including Shanghai Jiao Tong University, Chinese Academy of Sciences, and Sichuan University. Wang Jinwu and Wu Chengtie stand out as the most prolific contributors in this domain. The highest number of publications in this area was contributed by the journal Advanced Healthcare Materials. In this study, osteogenesis imperfecta, osteosarcoma, fractures, osteonecrosis, and cartilage diseases were identified as the most significant disorders investigated in this research area. By providing a comprehensive scientometric assessment, this study benefits both experienced researchers and newcomers alike, offering prompt access to essential information and fostering the extraction of innovative concepts within this specific field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对过去十年用于血管化骨组织工程的三维打印支架进行科学计量和可视化分析。
引入三维(3D)打印支架已成为实现骨组织工程(BTE)令人满意的血管再造的有效方法。然而,有关研究轨迹、基本研究方向、当前研究情况、关键研究重点和未来展望的分析性和描述性调查明显不足。因此,本研究旨在全面概述过去 10 年中血管化 BTE 三维打印结构所取得的进展。从科学网资料库中提取的信息时间跨度为 2014 年 1 月 1 日至 2024 年 4 月 1 日。利用先进的分析仪器,我们进行了全面的科学计量学和视觉分析。研究结果表明,中国在这一领域的研究中发挥着举足轻重的作用,占论文总数的 59.62%。包括上海交通大学、中国科学院和四川大学在内的多所院校都取得了显著的成果。王锦武和吴成铁是这一领域贡献最多的学者。在这一领域发表论文数量最多的是《先进医疗材料》杂志。在这项研究中,成骨不全症、骨肉瘤、骨折、骨坏死和软骨病被认为是该研究领域最重要的疾病。通过提供全面的科学计量学评估,这项研究使经验丰富的研究人员和新手都能从中受益,为他们提供了快速获取基本信息的途径,并促进了这一特定领域创新概念的提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
期刊最新文献
A scientometric and visualization analysis of 3D printing scaffolds for vascularized bone tissue engineering over the last decade. Extracellular vesicles originating from the mechanical microenvironment in the pathogenesis and applications for cardiovascular diseases. Mesenchymal stem cells: Guardians of women's health. Orexin-A increases the differentiation of human olfactory sensory neurons through orexin receptor type 1. Reprogramming canine cryopreserved hepatocytes to hepatic progenitor cells using small molecule compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1