Xiaotong Zhao, Xinya Wang, Binlei Liu, Han Hu, Yang Wang
{"title":"[Construction of a stable 4T1 cell line expressing <i>UL19</i> by the PiggyBac transposon system].","authors":"Xiaotong Zhao, Xinya Wang, Binlei Liu, Han Hu, Yang Wang","doi":"10.13345/j.cjb.240122","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the mechanism of the major capsid protein VP5 (encoded by the <i>UL19</i> gene) of oncolytic herpes simplex virus type Ⅱ (oHSV2) in regulating the antitumor function of immune cells, we constructed a mouse breast cancer cell line 4T1-iRFP-VP5-GFP stably expressing VP5 protein, near-infrared fluorescent protein (iRFP), and green fluorescent protein (GFP) by using the PiggyBac transposon system. Flow cytometry and Western blotting were employed to screen the monoclonal cell lines expressing both GFP and VP5 and examine the expression stability of <i>UL19</i> in the constructed cell line. The results of SYBR Green I real-time PCR and Western blotting showed that the copies of <i>UL19</i> and the expression level of VP5 protein in the 15th passage of 4T1-iRFP-VP5-GFP cells were significantly higher than those in the 4T1 cells transiently transfected with <i>UL19</i>, demonstrating the stable insertion of <i>UL19</i> into the 4T1 cell genome. The real-time cell analysis (RTCA) was employed to monitor the proliferation of 4T1-iRFP-VP5-GFP cells, which showed similar proliferation activity to their parental 4T1 cells. Further studies confirmed that NK92 cells exhibited stronger cytotoxicity against 4T1-iRFP-VP5-GFP cells than against 4T1 cells. This study layed a foundation for elucidating the role of VP5 protein in regulating immune cells, including T cells and NK cells, <i>via</i> HLA-E in 4T1 cells to exert the anti-tumor function.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"40 11","pages":"4138-4148"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the mechanism of the major capsid protein VP5 (encoded by the UL19 gene) of oncolytic herpes simplex virus type Ⅱ (oHSV2) in regulating the antitumor function of immune cells, we constructed a mouse breast cancer cell line 4T1-iRFP-VP5-GFP stably expressing VP5 protein, near-infrared fluorescent protein (iRFP), and green fluorescent protein (GFP) by using the PiggyBac transposon system. Flow cytometry and Western blotting were employed to screen the monoclonal cell lines expressing both GFP and VP5 and examine the expression stability of UL19 in the constructed cell line. The results of SYBR Green I real-time PCR and Western blotting showed that the copies of UL19 and the expression level of VP5 protein in the 15th passage of 4T1-iRFP-VP5-GFP cells were significantly higher than those in the 4T1 cells transiently transfected with UL19, demonstrating the stable insertion of UL19 into the 4T1 cell genome. The real-time cell analysis (RTCA) was employed to monitor the proliferation of 4T1-iRFP-VP5-GFP cells, which showed similar proliferation activity to their parental 4T1 cells. Further studies confirmed that NK92 cells exhibited stronger cytotoxicity against 4T1-iRFP-VP5-GFP cells than against 4T1 cells. This study layed a foundation for elucidating the role of VP5 protein in regulating immune cells, including T cells and NK cells, via HLA-E in 4T1 cells to exert the anti-tumor function.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.