Engineering a nano-drug delivery system to regulate m6A modification and enhance immunotherapy in gastric cancer

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL Acta Biomaterialia Pub Date : 2025-01-01 DOI:10.1016/j.actbio.2024.11.036
Zhengshuo Li , Xiaoyue Zhang , Can Liu , Yangge Wu , Yuqing Wen , Run Zheng , Chenxiao Xu , Junrui Tian , Qiu Peng , Xiang Zheng , Jia Wang , Qun Yan , Lingyu Wei , Jian Ma
{"title":"Engineering a nano-drug delivery system to regulate m6A modification and enhance immunotherapy in gastric cancer","authors":"Zhengshuo Li ,&nbsp;Xiaoyue Zhang ,&nbsp;Can Liu ,&nbsp;Yangge Wu ,&nbsp;Yuqing Wen ,&nbsp;Run Zheng ,&nbsp;Chenxiao Xu ,&nbsp;Junrui Tian ,&nbsp;Qiu Peng ,&nbsp;Xiang Zheng ,&nbsp;Jia Wang ,&nbsp;Qun Yan ,&nbsp;Lingyu Wei ,&nbsp;Jian Ma","doi":"10.1016/j.actbio.2024.11.036","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer cell membrane-derived nanoparticle drug delivery system enables precise drug delivery to tumor tissues and is a new effective way to treat solid tumors. The aim of this study is to develop a safe and effective cancer cell membrane-derived nano-delivery system targeting gastric cancer. We previously reported that EPH receptor A2 (EphA2) is an important target for gastric cancer. RNA m6A methyltransferases METTL3 is upregulated in multiple cancers and promotes cancer development by increasing the expression of multiple oncogenes. We design a new nano-delivery system PLGA-STM-TAT: nanoparticles PLGA (poly lactic acid-hydroxyacetic acid) loaded with METTL3 inhibitor STM2457 and cell-penetrating peptide TAT, and then covered with gastric cancer cell membranes equipped with YSA peptides by means of click chemistry, which targeting EphA2. The nanoparticles are specifically enriched in gastric cancer tissues, significantly increased drug accumulation, and inhibited cancer cell proliferation by decreasing key oncogenes c-MYC and BRD4. During drug administration, we found that the expression of the immune checkpoint molecule PD-L1 was suppressed, and the anti-tumor immune effect was enhanced by the nano-delivery system in combination with anti-PD1. This cancer cell membrane-derived nano-delivery system provides a new biological strategy to treat gastric cancer through effective m6A modulation and EphA2 targeting.</div></div><div><h3>Statement of significance</h3><div>M6A modifications have important biological roles, especially in tumors. Targeting highly modified m6A in gastric cancer becomes a challenge. We developed a nano-drug delivery system for modulating m6A that could produce an effective anti-cancer therapeutic effect and that the nanoparticles enhanced antitumor immunity when combined with anti-PD1.This cancer cell membrane-derived new nano-drug delivery system shows great promise as an antitumor approach by modulating m6A modification and targeting EphA2 in gastric cancers.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"191 ","pages":"Pages 412-427"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124006895","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer cell membrane-derived nanoparticle drug delivery system enables precise drug delivery to tumor tissues and is a new effective way to treat solid tumors. The aim of this study is to develop a safe and effective cancer cell membrane-derived nano-delivery system targeting gastric cancer. We previously reported that EPH receptor A2 (EphA2) is an important target for gastric cancer. RNA m6A methyltransferases METTL3 is upregulated in multiple cancers and promotes cancer development by increasing the expression of multiple oncogenes. We design a new nano-delivery system PLGA-STM-TAT: nanoparticles PLGA (poly lactic acid-hydroxyacetic acid) loaded with METTL3 inhibitor STM2457 and cell-penetrating peptide TAT, and then covered with gastric cancer cell membranes equipped with YSA peptides by means of click chemistry, which targeting EphA2. The nanoparticles are specifically enriched in gastric cancer tissues, significantly increased drug accumulation, and inhibited cancer cell proliferation by decreasing key oncogenes c-MYC and BRD4. During drug administration, we found that the expression of the immune checkpoint molecule PD-L1 was suppressed, and the anti-tumor immune effect was enhanced by the nano-delivery system in combination with anti-PD1. This cancer cell membrane-derived nano-delivery system provides a new biological strategy to treat gastric cancer through effective m6A modulation and EphA2 targeting.

Statement of significance

M6A modifications have important biological roles, especially in tumors. Targeting highly modified m6A in gastric cancer becomes a challenge. We developed a nano-drug delivery system for modulating m6A that could produce an effective anti-cancer therapeutic effect and that the nanoparticles enhanced antitumor immunity when combined with anti-PD1.This cancer cell membrane-derived new nano-drug delivery system shows great promise as an antitumor approach by modulating m6A modification and targeting EphA2 in gastric cancers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米给药系统调节胃癌中的 m6A 修饰并加强免疫疗法。
癌细胞膜衍生纳米颗粒给药系统可将药物精确输送到肿瘤组织,是治疗实体瘤的一种新的有效方法。本研究旨在开发一种安全有效的针对胃癌的癌细胞膜衍生纳米给药系统。此前我们曾报道,EPH受体A2(EphA2)是胃癌的一个重要靶点。RNA m6A甲基转移酶METTL3在多种癌症中上调,并通过增加多种癌基因的表达促进癌症发展。我们设计了一种新的纳米给药系统 PLGA-STM-TAT:纳米颗粒 PLGA(聚乳酸-羟基乙酸)装载有 METTL3 抑制剂 STM2457 和细胞穿透肽 TAT,然后通过点击化学方法将装有 YSA 肽的胃癌细胞膜覆盖,该 YSA 肽靶向 EphA2。该纳米颗粒在胃癌组织中特异性富集,显著增加了药物积累,并通过降低关键癌基因c-MYC和BRD4抑制癌细胞增殖。在给药过程中,我们发现免疫检查点分子PD-L1的表达受到抑制,纳米给药系统与抗PD1联用增强了抗肿瘤免疫效果。这种源自癌细胞膜的纳米递送系统通过有效的 m6A 调节和 EphA2 靶向,为治疗胃癌提供了一种新的生物策略。意义说明:M6A修饰具有重要的生物学作用,尤其是在肿瘤中。在胃癌中靶向高度修饰的 m6A 成为一项挑战。我们开发了一种调节 m6A 的纳米给药系统,该系统能产生有效的抗癌治疗效果,而且当纳米颗粒与抗 PD1 结合使用时,能增强抗肿瘤免疫力。这种由癌细胞膜衍生的新型纳米给药系统通过调节胃癌中的 m6A 修饰和靶向 EphA2 显示出作为抗肿瘤方法的巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
期刊最新文献
Editorial Board Corrigendum to “A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes” [Acta Biomaterialia 2021, 124, 205-218] Corrigendum to “Vascular Endothelial Growth Factor-Capturing Aligned Electrospun Polycaprolactone/Gelatin Nanofibers Promote Patellar Ligament Regeneration” [Acta Biomaterialia 140, 2022, 122-246] Physical exercise impacts bone remodeling around bio-resorbable magnesium implants A metal-organic framework functionalized CaO2-based cascade nanoreactor induces synergistic cuproptosis/ferroptosis and Ca2+ overload-mediated mitochondrial damage for enhanced sono-chemodynamic immunotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1