Fibroblast-mediated macrophage recruitment supports acute wound healing.

Veronica M Amuso, MaryEllen R Haas, Paula O Cooper, Ranojoy Chatterjee, Sana Hafiz, Shatha Salameh, Chiraag Gohel, Miguel F Mazumder, Violet Josephson, Sarah S Kleb, Khatereh Khorsandi, Anelia Horvath, Ali Rahnavard, Brett A Shook
{"title":"Fibroblast-mediated macrophage recruitment supports acute wound healing.","authors":"Veronica M Amuso, MaryEllen R Haas, Paula O Cooper, Ranojoy Chatterjee, Sana Hafiz, Shatha Salameh, Chiraag Gohel, Miguel F Mazumder, Violet Josephson, Sarah S Kleb, Khatereh Khorsandi, Anelia Horvath, Ali Rahnavard, Brett A Shook","doi":"10.1016/j.jid.2024.10.609","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2024.10.609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epithelial and immune cells have long been appreciated for their contribution to the early immune response after injury; however, much less is known about the role of mesenchymal cells. Using single nuclei RNA-sequencing, we defined changes in gene expression associated with inflammation at 1-day post-wounding (dpw) in mouse skin. Compared to keratinocytes and myeloid cells, we detected enriched expression of pro-inflammatory genes in fibroblasts associated with deeper layers of the skin. In particular, SCA1+ fibroblasts were enriched for numerous chemokines, including CCL2, CCL7, and IL33 compared to SCA1- fibroblasts. Genetic deletion of Ccl2 in fibroblasts resulted in fewer wound bed macrophages and monocytes during injury-induced inflammation with reduced revascularization and re-epithelialization during the proliferation phase of healing. These findings highlight the important contribution of fibroblast-derived factors to injury-induced inflammation and the impact of immune cell dysregulation on subsequent tissue repair.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
成纤维细胞介导的巨噬细胞招募支持急性伤口愈合。
上皮细胞和免疫细胞对损伤后早期免疫反应的贡献长期以来一直受到人们的重视;然而,人们对间充质细胞的作用却知之甚少。我们利用单核 RNA 测序确定了小鼠皮肤在创伤后 1 天(dpw)与炎症相关的基因表达变化。与角质细胞和髓系细胞相比,我们在与皮肤深层相关的成纤维细胞中检测到了大量促炎症基因的表达。特别是,与 SCA1 成纤维细胞相比,SCA1+ 成纤维细胞富含多种趋化因子,包括 CCL2、CCL7 和 IL33。在成纤维细胞中基因缺失 Ccl2 会导致在损伤诱导炎症期间伤口床巨噬细胞和单核细胞数量减少,同时在愈合的增殖阶段血管再通和再上皮化减少。这些发现凸显了成纤维细胞衍生因子对损伤诱导炎症的重要贡献,以及免疫细胞失调对后续组织修复的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abrogation of USP9X Is a Potential Strategy to Decrease PEG10 Levels and Impede Tumor Progression in Cutaneous T-Cell Lymphoma. Intravenous Ig Ameliorates Disease in a Murine Model of Anti-Laminin 332 Mucous Membrane Pemphigoid. Desmosomal Hyper-Adhesion Affects Direct Inhibition of Desmoglein Interactions in Pemphigus. SERPINB3/B4 Is Increased in Psoriasis and Rosacea Lesions and Has Proinflammatory Effects in Mouse Models of these Diseases. Keratinocytes Present Staphylococcus aureus Enterotoxins and Promote Malignant and Nonmalignant T Cell Proliferation in Cutaneous T-Cell Lymphoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1