A framework for understanding collective microbiome metabolism

IF 20.5 1区 生物学 Q1 MICROBIOLOGY Nature Microbiology Pub Date : 2024-11-26 DOI:10.1038/s41564-024-01850-3
Matthias Huelsmann, Olga T. Schubert, Martin Ackermann
{"title":"A framework for understanding collective microbiome metabolism","authors":"Matthias Huelsmann, Olga T. Schubert, Martin Ackermann","doi":"10.1038/s41564-024-01850-3","DOIUrl":null,"url":null,"abstract":"<p>Microbiome metabolism underlies numerous vital ecosystem functions. Individual microbiome members often perform partial catabolism of substrates or do not express all of the metabolic functions required for growth. Microbiome members can complement each other by exchanging metabolic intermediates and cellular building blocks to achieve a collective metabolism. We currently lack a mechanistic framework to explain why microbiome members adopt partial metabolism and how metabolic functions are distributed among them. Here we argue that natural selection for proteome efficiency—that is, performing essential metabolic fluxes at a minimal protein investment—explains partial metabolism of microbiome members, which underpins the collective metabolism of microbiomes. Using the carbon cycle as an example, we discuss motifs of collective metabolism, the conditions under which these motifs increase the proteome efficiency of individuals and the metabolic interactions they result in. In summary, we propose a mechanistic framework for how collective metabolic functions emerge from selection on individuals.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"43 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01850-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbiome metabolism underlies numerous vital ecosystem functions. Individual microbiome members often perform partial catabolism of substrates or do not express all of the metabolic functions required for growth. Microbiome members can complement each other by exchanging metabolic intermediates and cellular building blocks to achieve a collective metabolism. We currently lack a mechanistic framework to explain why microbiome members adopt partial metabolism and how metabolic functions are distributed among them. Here we argue that natural selection for proteome efficiency—that is, performing essential metabolic fluxes at a minimal protein investment—explains partial metabolism of microbiome members, which underpins the collective metabolism of microbiomes. Using the carbon cycle as an example, we discuss motifs of collective metabolism, the conditions under which these motifs increase the proteome efficiency of individuals and the metabolic interactions they result in. In summary, we propose a mechanistic framework for how collective metabolic functions emerge from selection on individuals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解微生物群集体代谢的框架
微生物组的新陈代谢是众多重要生态系统功能的基础。单个微生物群成员通常会对底物进行部分分解代谢,或不表达生长所需的全部代谢功能。微生物群成员可以通过交换代谢中间产物和细胞构筑物来实现集体代谢,从而实现互补。目前,我们缺乏一个机制框架来解释微生物组成员为何采用部分代谢以及代谢功能如何在它们之间分配。在这里,我们认为蛋白质组效率的自然选择--即以最小的蛋白质投资来完成必要的代谢通量--解释了微生物组成员的部分代谢,这也是微生物组集体代谢的基础。以碳循环为例,我们讨论了集体新陈代谢的模式、这些模式提高个体蛋白质组效率的条件以及它们导致的新陈代谢相互作用。总之,我们提出了一个机制框架,说明个体选择如何产生集体代谢功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
期刊最新文献
A framework for understanding collective microbiome metabolism Parkinson’s drug starves gut microbes of iron Differential stress responsiveness determines intraspecies virulence heterogeneity and host adaptation in Listeria monocytogenes The neonatal Fc receptor is a cellular receptor for human astrovirus Retraction Note: Culture of previously uncultured members of the human gut microbiota by culturomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1