The advantage of quantum control in many-body Hamiltonian learning

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2024-11-26 DOI:10.22331/q-2024-11-26-1537
Alicja Dutkiewicz, Thomas E. O'Brien, Thomas Schuster
{"title":"The advantage of quantum control in many-body Hamiltonian learning","authors":"Alicja Dutkiewicz, Thomas E. O'Brien, Thomas Schuster","doi":"10.22331/q-2024-11-26-1537","DOIUrl":null,"url":null,"abstract":"We study the problem of learning the Hamiltonian of a many-body quantum system from experimental data. We show that the rate of learning depends on the amount of control available during the experiment. We consider three control models: one where time evolution can be augmented with instantaneous quantum operations, one where the Hamiltonian itself can be augmented by adding constant terms, and one where the experimentalist has no control over the system's time evolution. With continuous quantum control, we provide an adaptive algorithm for learning a many-body Hamiltonian at the Heisenberg limit: $T = \\mathcal{O}(\\epsilon^{-1})$, where $T$ is the total amount of time evolution across all experiments and $\\epsilon$ is the target precision. This requires only preparation of product states, time-evolution, and measurement in a product basis. In the absence of quantum control, we prove that learning is standard quantum limited, $T = \\Omega(\\epsilon^{-2})$, for large classes of many-body Hamiltonians, including any Hamiltonian that thermalizes via the eigenstate thermalization hypothesis. These results establish a quadratic advantage in experimental runtime for learning with quantum control.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"62 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-26-1537","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of learning the Hamiltonian of a many-body quantum system from experimental data. We show that the rate of learning depends on the amount of control available during the experiment. We consider three control models: one where time evolution can be augmented with instantaneous quantum operations, one where the Hamiltonian itself can be augmented by adding constant terms, and one where the experimentalist has no control over the system's time evolution. With continuous quantum control, we provide an adaptive algorithm for learning a many-body Hamiltonian at the Heisenberg limit: $T = \mathcal{O}(\epsilon^{-1})$, where $T$ is the total amount of time evolution across all experiments and $\epsilon$ is the target precision. This requires only preparation of product states, time-evolution, and measurement in a product basis. In the absence of quantum control, we prove that learning is standard quantum limited, $T = \Omega(\epsilon^{-2})$, for large classes of many-body Hamiltonians, including any Hamiltonian that thermalizes via the eigenstate thermalization hypothesis. These results establish a quadratic advantage in experimental runtime for learning with quantum control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多体哈密顿学习中的量子控制优势
我们研究了从实验数据中学习多体量子系统哈密顿的问题。我们的研究表明,学习速度取决于实验过程中可用的控制量。我们考虑了三种控制模型:一种是时间演化可以通过瞬时量子操作来增强,一种是哈密顿本身可以通过添加常数项来增强,还有一种是实验者无法控制系统的时间演化。通过连续量子控制,我们提供了一种在海森堡极限学习多体哈密顿的自适应算法:$T = \mathcal{O}(\epsilon^{-1})$,其中$T$是所有实验的时间演化总量,$\epsilon$是目标精度。这只需要在产品基础上准备产品状态、时间演化和测量。在没有量子控制的情况下,我们证明了对于大类多体哈密顿,包括任何通过特征状态热化假说热化的哈密顿,学习是标准量子有限的,即 $T = \Omega(\epsilon^{-2})$ 。这些结果确立了量子控制学习在实验运行时间上的四次方优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Learning to rank quantum circuits for hardware-optimized performance enhancement Constructing quantum codes from any classical code and their embedding in ground space of local Hamiltonians Tight concentration inequalities for quantum adversarial setups exploiting permutation symmetry Separating a particle’s mass from its momentum The advantage of quantum control in many-body Hamiltonian learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1