Bernardo Ballotta, Jacopo Lupi, Leandro Ayarde-Henríquez, Stephen Dooley
{"title":"Ab initio conformational analysis of α/β-D-xylopyranose at pyrolysis conditions","authors":"Bernardo Ballotta, Jacopo Lupi, Leandro Ayarde-Henríquez, Stephen Dooley","doi":"10.1039/d4cp03719g","DOIUrl":null,"url":null,"abstract":"Xylopyranose is the principal monosaccharide unit of hemicellulose, one of the three major biopolymers of lignocellulosic biomass. Understanding its decomposition mechanism is increasingly relevant for thermochemical biorefinery research such as pyrolysis. Significant efforts have been made to study its chemical and structural properties using both computational and experimental methods. However, due to its high structural flexibility and numerous hydroxyl groups, various metastable conformers arise. In this work, we performed a computational exploration of the conformational space of both anomeric forms, α and β, of <small>D</small>-xylopyranose using the semi-empirical GFN2-xTB method in conjunction with metadynamics and density functional theory simulations for structural optimization and vibrational analysis. Xylopyranose conformers free energy and enthalpy variations are analyzed across temperatures typical of fast biomass pyrolysis (298–1068 K), with the Boltzmann population distribution of the most populated conformers determined. This study provides a detailed computational analysis of the conformational space and thermochemistry of xylopyranose. Additionally, 44 and 59 conformers of the α and β anomers were found, for both of which a selection of 10 conformers based on Boltzmann population distribution analysis is performed to reduce the conformational space for <em>ab initio</em> studies of the pyrolysis reaction kinetics.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03719g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Xylopyranose is the principal monosaccharide unit of hemicellulose, one of the three major biopolymers of lignocellulosic biomass. Understanding its decomposition mechanism is increasingly relevant for thermochemical biorefinery research such as pyrolysis. Significant efforts have been made to study its chemical and structural properties using both computational and experimental methods. However, due to its high structural flexibility and numerous hydroxyl groups, various metastable conformers arise. In this work, we performed a computational exploration of the conformational space of both anomeric forms, α and β, of D-xylopyranose using the semi-empirical GFN2-xTB method in conjunction with metadynamics and density functional theory simulations for structural optimization and vibrational analysis. Xylopyranose conformers free energy and enthalpy variations are analyzed across temperatures typical of fast biomass pyrolysis (298–1068 K), with the Boltzmann population distribution of the most populated conformers determined. This study provides a detailed computational analysis of the conformational space and thermochemistry of xylopyranose. Additionally, 44 and 59 conformers of the α and β anomers were found, for both of which a selection of 10 conformers based on Boltzmann population distribution analysis is performed to reduce the conformational space for ab initio studies of the pyrolysis reaction kinetics.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.