Low Area Specific Resistance La-Doped Bi2O3 Nanocomposite Thin Film Cathodes for Solid Oxide Fuel Cell Applications

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-26 DOI:10.1021/acs.nanolett.4c03679
Adam J. Lovett, Matthew P. Wells, Yizhi Zhang, Jiawei Song, Thomas S. Miller, Haiyan Wang, Judith L. MacManus-Driscoll
{"title":"Low Area Specific Resistance La-Doped Bi2O3 Nanocomposite Thin Film Cathodes for Solid Oxide Fuel Cell Applications","authors":"Adam J. Lovett, Matthew P. Wells, Yizhi Zhang, Jiawei Song, Thomas S. Miller, Haiyan Wang, Judith L. MacManus-Driscoll","doi":"10.1021/acs.nanolett.4c03679","DOIUrl":null,"url":null,"abstract":"In the context of solid oxide fuel cells (SOFCs), vertically aligned nanocomposite (VAN) thin films have emerged as a leading material type to overcome performance limitations in cathodes. Such VAN films combine conventional cathodes like La<sub><i>x</i></sub>Sr<sub>1–<i>x</i></sub>Co<sub><i>y</i></sub>Fe<sub>1–<i>y</i></sub>O<sub>3</sub> (LSCF) and La<sub>1–x</sub>Sr<sub><i>x</i></sub>MnO<sub>3</sub> (LSM) together with highly O<sup>2–</sup> ionic conducting materials including yttria-stabilized zirconia (YSZ) or doped CeO<sub>2</sub>. Next-generation SOFCs will benefit from the exceptionally high ionic conductivity (1 S cm<sup>–1</sup> at 730 °C) of Bi<sub>2</sub>O<sub>3</sub>-based materials. Therefore, an opportunity exists to develop Bi<sub>2</sub>O<sub>3</sub>-based VAN cathodes. Herein, we present the first growth and characterization of a Bi<sub>2</sub>O<sub>3</sub>-based VAN cathode, containing epitaxial La-doped Bi<sub>2</sub>O<sub>3</sub> (LDBO) columns embedded in a LSM matrix. Our novel VANs exhibit low area specific resistance (ASR) (8.3 Ω cm<sup>2</sup> at 625 °C), representing ∼3 orders of magnitude reduction compared to planar LSM. Therefore, by demonstrating a high-performance Bi<sub>2</sub>O<sub>3</sub>-based cathode, this work provides an important foundation for future Bi<sub>2</sub>O<sub>3</sub>-based VAN SOFCs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"3 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03679","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of solid oxide fuel cells (SOFCs), vertically aligned nanocomposite (VAN) thin films have emerged as a leading material type to overcome performance limitations in cathodes. Such VAN films combine conventional cathodes like LaxSr1–xCoyFe1–yO3 (LSCF) and La1–xSrxMnO3 (LSM) together with highly O2– ionic conducting materials including yttria-stabilized zirconia (YSZ) or doped CeO2. Next-generation SOFCs will benefit from the exceptionally high ionic conductivity (1 S cm–1 at 730 °C) of Bi2O3-based materials. Therefore, an opportunity exists to develop Bi2O3-based VAN cathodes. Herein, we present the first growth and characterization of a Bi2O3-based VAN cathode, containing epitaxial La-doped Bi2O3 (LDBO) columns embedded in a LSM matrix. Our novel VANs exhibit low area specific resistance (ASR) (8.3 Ω cm2 at 625 °C), representing ∼3 orders of magnitude reduction compared to planar LSM. Therefore, by demonstrating a high-performance Bi2O3-based cathode, this work provides an important foundation for future Bi2O3-based VAN SOFCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于固体氧化物燃料电池的低面积比电阻 La 掺杂 Bi2O3 纳米复合薄膜阴极
在固体氧化物燃料电池(SOFC)方面,垂直排列纳米复合(VAN)薄膜已成为克服阴极性能限制的主要材料类型。这种 VAN 薄膜将 LaxSr1-xCoyFe1-yO3 (LSCF) 和 La1-xSrxMnO3 (LSM) 等传统阴极与包括钇稳定氧化锆 (YSZ) 或掺杂 CeO2 在内的高 O2- 离子导电材料结合在一起。下一代 SOFC 将受益于基于 Bi2O3 材料的超高离子导电性(730 °C 时为 1 S cm-1)。因此,开发基于 Bi2O3 的 VAN 阴极是一个机会。在此,我们首次展示了基于 Bi2O3 的 VAN 阴极的生长和表征,这种阴极包含嵌入 LSM 基质中的外延 La 掺杂 Bi2O3 (LDBO) 柱。我们的新型 VAN 具有较低的面积比电阻 (ASR)(625 ℃ 时为 8.3 Ω cm2),与平面 LSM 相比降低了 3 个数量级。因此,通过展示基于 Bi2O3 的高性能阴极,这项工作为未来基于 Bi2O3 的 VAN SOFC 奠定了重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Pharmacokinetic Profiling of Unlabeled Magnetic Nanoparticles Using Magnetic Particle Imaging as a Novel Cold Tracer Assay Low Area Specific Resistance La-Doped Bi2O3 Nanocomposite Thin Film Cathodes for Solid Oxide Fuel Cell Applications Spatiotemporal Cell Control via High-Precision Electronic Regulation of Microenvironmental pH Phonon State Tomography of Electron Correlation Dynamics in Optically Excited Solids Resonance-Amplified Terahertz Near-Field Spectroscopy of a Single Nanowire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1