{"title":"eDifFIQA: Towards Efficient Face Image Quality Assessment Based on Denoising Diffusion Probabilistic Models","authors":"Žiga Babnik;Peter Peer;Vitomir Štruc","doi":"10.1109/TBIOM.2024.3376236","DOIUrl":null,"url":null,"abstract":"State-of-the-art Face Recognition (FR) models perform well in constrained scenarios, but frequently fail in difficult real-world scenarios, when no quality guarantees can be made for face samples. For this reason, Face Image Quality Assessment (FIQA) techniques are often used by FR systems, to provide quality estimates of captured face samples. The quality estimate provided by FIQA techniques can be used by the FR system to reject samples of low-quality, in turn improving the performance of the system and reducing the number of critical false-match errors. However, despite steady improvements, ensuring a good trade-off between the performance and computational complexity of FIQA methods across diverse face samples remains challenging. In this paper, we present DifFIQA, a powerful unsupervised approach for quality assessment based on the popular denoising diffusion probabilistic models (DDPMs) and the extended (eDifFIQA) approach. The main idea of the base DifFIQA approach is to utilize the forward and backward processes of DDPMs to perturb facial images and quantify the impact of these perturbations on the corresponding image embeddings for quality prediction. Because of the iterative nature of DDPMs the base DifFIQA approach is extremely computationally expensive. Using eDifFIQA we are able to improve on both the performance and computational complexity of the base DifFIQA approach, by employing label optimized knowledge distillation. In this process, quality information inferred by DifFIQA is distilled into a quality-regression model. During the distillation process we use an additional source of quality information hidden in the relative position of the embedding to further improve the predictive capabilities of the underlying regression model. By choosing different feature extraction backbone models as the basis for the quality-regression eDifFIQA model, we are able to control the trade-off between the predictive capabilities and computational complexity of the final model. We evaluate three eDifFIQA variants of varying sizes in comprehensive experiments on 7 diverse datasets containing static-images and a separate video-based dataset, with 4 target CNN-based FR models and 2 target Transformer-based FR models and against 10 state-of-the-art FIQA techniques, as well as against the initial DifFIQA baseline and a simple regression-based predictor DifFIQA(R), distilled from DifFIQA without any additional optimization. The results show that the proposed label optimized knowledge distillation improves on the performance and computationally complexity of the base DifFIQA approach, and is able to achieve state-of-the-art performance in several distinct experimental scenarios. Furthermore, we also show that the distilled model can be used directly for face recognition and leads to highly competitive results.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 4","pages":"458-474"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10468647/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
State-of-the-art Face Recognition (FR) models perform well in constrained scenarios, but frequently fail in difficult real-world scenarios, when no quality guarantees can be made for face samples. For this reason, Face Image Quality Assessment (FIQA) techniques are often used by FR systems, to provide quality estimates of captured face samples. The quality estimate provided by FIQA techniques can be used by the FR system to reject samples of low-quality, in turn improving the performance of the system and reducing the number of critical false-match errors. However, despite steady improvements, ensuring a good trade-off between the performance and computational complexity of FIQA methods across diverse face samples remains challenging. In this paper, we present DifFIQA, a powerful unsupervised approach for quality assessment based on the popular denoising diffusion probabilistic models (DDPMs) and the extended (eDifFIQA) approach. The main idea of the base DifFIQA approach is to utilize the forward and backward processes of DDPMs to perturb facial images and quantify the impact of these perturbations on the corresponding image embeddings for quality prediction. Because of the iterative nature of DDPMs the base DifFIQA approach is extremely computationally expensive. Using eDifFIQA we are able to improve on both the performance and computational complexity of the base DifFIQA approach, by employing label optimized knowledge distillation. In this process, quality information inferred by DifFIQA is distilled into a quality-regression model. During the distillation process we use an additional source of quality information hidden in the relative position of the embedding to further improve the predictive capabilities of the underlying regression model. By choosing different feature extraction backbone models as the basis for the quality-regression eDifFIQA model, we are able to control the trade-off between the predictive capabilities and computational complexity of the final model. We evaluate three eDifFIQA variants of varying sizes in comprehensive experiments on 7 diverse datasets containing static-images and a separate video-based dataset, with 4 target CNN-based FR models and 2 target Transformer-based FR models and against 10 state-of-the-art FIQA techniques, as well as against the initial DifFIQA baseline and a simple regression-based predictor DifFIQA(R), distilled from DifFIQA without any additional optimization. The results show that the proposed label optimized knowledge distillation improves on the performance and computationally complexity of the base DifFIQA approach, and is able to achieve state-of-the-art performance in several distinct experimental scenarios. Furthermore, we also show that the distilled model can be used directly for face recognition and leads to highly competitive results.