An orange peel-derived zirconium-coordination polymer for highly efficient reductive upgradation of 5-hydroxymethylfurfural†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-10-29 DOI:10.1039/D4NJ03426K
Siyu Sun, Ying Wan, Zheng Li, Lumen Chao, Yuanyuan Bai, Qunhua Liu, Can Wang, Wen Liu and Peijun Ji
{"title":"An orange peel-derived zirconium-coordination polymer for highly efficient reductive upgradation of 5-hydroxymethylfurfural†","authors":"Siyu Sun, Ying Wan, Zheng Li, Lumen Chao, Yuanyuan Bai, Qunhua Liu, Can Wang, Wen Liu and Peijun Ji","doi":"10.1039/D4NJ03426K","DOIUrl":null,"url":null,"abstract":"<p >Both the use of renewable natural sources to prepare catalytic materials and the Meerwein–Ponndorf–Verley (MPV) reduction of carbonyl compounds are very attractive topics in catalysis. Neohesperidin (NES) with rich oxygen-containing groups can bind to various metal ions. In this work, NES has been used as the ligand to coordinate Zr(<small>IV</small>) for the synthesis of a porous coordination polymer (Zr-NES). Various characterization studies demonstrated the formation of robust porous inorganic–organic frameworks and strong Lewis acid–base sites in Zr-NES. Due to the presence of coordinatively unsaturated Zr sites, Zr-NES had highly active Lewis acid sites, so it can efficiently catalyze the hydrogenation of 5-hydroxymethylfurfural (HMF) to prepare 2,5-bis-(hydroxymethyl)furan (BHMF). After 2 h at a mild temperature of 120 °C, a BHMF yield of 99.0% with turnover frequency (TOF) of 8.5 h<small><sup>−1</sup></small> could be obtained. This robust bifunctional acid–base Zr-NES was also demonstrated to be effective in one-step reductive etherification of 5-HMF to 5-[(1-methylethoxy)methyl]-2-furanmethanol (MEFA), a potential biomass-derived fuel additive, with 90% yield. Kinetic studies revealed that the activation energy for CTH of 5-HMF was 44.73 kJ mol<small><sup>−1</sup></small>, accounting for the high reaction rate. Due to the strong interactions between Zr<small><sup>4+</sup></small> and oxygen-containing groups, Zr-NES was highly stable and could be reused without a significant decline in activity.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19661-19673"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03426k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Both the use of renewable natural sources to prepare catalytic materials and the Meerwein–Ponndorf–Verley (MPV) reduction of carbonyl compounds are very attractive topics in catalysis. Neohesperidin (NES) with rich oxygen-containing groups can bind to various metal ions. In this work, NES has been used as the ligand to coordinate Zr(IV) for the synthesis of a porous coordination polymer (Zr-NES). Various characterization studies demonstrated the formation of robust porous inorganic–organic frameworks and strong Lewis acid–base sites in Zr-NES. Due to the presence of coordinatively unsaturated Zr sites, Zr-NES had highly active Lewis acid sites, so it can efficiently catalyze the hydrogenation of 5-hydroxymethylfurfural (HMF) to prepare 2,5-bis-(hydroxymethyl)furan (BHMF). After 2 h at a mild temperature of 120 °C, a BHMF yield of 99.0% with turnover frequency (TOF) of 8.5 h−1 could be obtained. This robust bifunctional acid–base Zr-NES was also demonstrated to be effective in one-step reductive etherification of 5-HMF to 5-[(1-methylethoxy)methyl]-2-furanmethanol (MEFA), a potential biomass-derived fuel additive, with 90% yield. Kinetic studies revealed that the activation energy for CTH of 5-HMF was 44.73 kJ mol−1, accounting for the high reaction rate. Due to the strong interactions between Zr4+ and oxygen-containing groups, Zr-NES was highly stable and could be reused without a significant decline in activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 5-羟甲基糠醛†高效还原升级的橙皮衍生锆配位聚合物
利用可再生天然资源制备催化材料和羰基化合物的 Meerwein-Ponndorf-Verley (MPV)还原都是催化领域极具吸引力的课题。新橙皮甙(NES)含有丰富的含氧基团,可与多种金属离子结合。在这项研究中,NES 被用作配体来配位 Zr(IV),从而合成了一种多孔配位聚合物(Zr-NES)。各种表征研究表明,Zr-NES 中形成了坚固的多孔无机-有机框架和强路易斯酸碱位点。由于存在配位不饱和的 Zr 位点,Zr-NES 具有高活性的路易斯酸位点,因此它能有效催化 5-羟甲基糠醛(HMF)的氢化反应,制备出 2,5-双(羟甲基)呋喃(BHMF)。在 120 °C 的温和温度下反应 2 小时后,可获得 99.0% 的 BHMF 收率和 8.5 h-1 的周转率(TOF)。研究还证明,这种稳健的双功能酸碱 Zr-NES 能有效地将 5-HMF 一步还原醚化为 5-[(1-甲基乙氧基)甲基]-2-呋喃甲醇(MEFA),后者是一种潜在的生物质燃料添加剂,产率达 90%。动力学研究表明,5-HMF 的 CTH 活化能为 44.73 kJ mol-1,因此反应速率很高。由于 Zr4+ 与含氧基团之间的相互作用很强,Zr-NES 具有很高的稳定性,可重复使用而不会显著降低活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover A transition-metal-free catalytic reduction of benzylic alcohols and alkenes and N-formylation of nitroarenes mediated by iodide ions and formic acid† Construction of morphology-controllable NiS/Ni3S4 hybrid nanosheets for all-solid-state asymmetric supercapacitors† Enhanced solar steam generation using carbonized Platanus acerifolia fruit with fibrous channels for improved water transport†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1