Flower-like MoS2 microspheres highly dispersed on CoFe2O4/MIL-101(Fe) metal organic framework: a recoverable magnetic catalyst for the reduction of toxic nitroaromatics in water

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2024-10-28 DOI:10.1039/D4CE00896K
Mehri Moradi-Beiranvand, Saeed Farhadi, Abedin Zabardasti and Farzaneh Mahmoudi
{"title":"Flower-like MoS2 microspheres highly dispersed on CoFe2O4/MIL-101(Fe) metal organic framework: a recoverable magnetic catalyst for the reduction of toxic nitroaromatics in water","authors":"Mehri Moradi-Beiranvand, Saeed Farhadi, Abedin Zabardasti and Farzaneh Mahmoudi","doi":"10.1039/D4CE00896K","DOIUrl":null,"url":null,"abstract":"<p >In this study, we report on the synthesis and characterization of novel magnetic MoS<small><sub>2</sub></small>/CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/MIL101-(Fe) nanocomposite catalysts designed for the efficient reduction of toxic nitroaromatic compounds, such as nitrophenols and nitroanilines, to their corresponding amines at ambient temperature. The nanocomposites were engineered by integrating metal–organic frameworks (MIL101-(Fe)), flower-like MoS<small><sub>2</sub></small> microspheres, and CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanocrystals using a hydrothermal method. The structural and physicochemical properties of the nanocomposites were thoroughly investigated using a suite of analytical techniques, including XRD, FT-IR, FE-SEM, EDX, VSM, BET surface area analysis, and zeta potential measurement. The results demonstrate that the MoS<small><sub>2</sub></small>/CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/MIL-101(Fe) nanocomposite exhibits high catalytic activity in the reduction of 4-nitrophenol (4-NP), 2-nitrophenol (2-NP), 2-nitroaniline (2-NA), and 4-nitroaniline (4-NA) to their respective amine derivatives. The conversion rates are notably high, with pseudo-first-order rate constants of 0.386, 0.086, 0.064, and 0.117 min<small><sup>−1</sup></small>, respectively. Specifically, the complete conversion of these pollutants was achieved within 18–21 minutes, demonstrating the exceptional efficiency of the nanocomposite. Furthermore, the study explored the influence of catalyst dosage and reducing agent concentration on the reduction process's effectiveness. Notably, the magnetic nature of the nanocomposite facilitates its facile separation from the reaction mixture using an external magnet, significantly simplifying its recovery and reuse.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 46","pages":" 6591-6607"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00896k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we report on the synthesis and characterization of novel magnetic MoS2/CoFe2O4/MIL101-(Fe) nanocomposite catalysts designed for the efficient reduction of toxic nitroaromatic compounds, such as nitrophenols and nitroanilines, to their corresponding amines at ambient temperature. The nanocomposites were engineered by integrating metal–organic frameworks (MIL101-(Fe)), flower-like MoS2 microspheres, and CoFe2O4 nanocrystals using a hydrothermal method. The structural and physicochemical properties of the nanocomposites were thoroughly investigated using a suite of analytical techniques, including XRD, FT-IR, FE-SEM, EDX, VSM, BET surface area analysis, and zeta potential measurement. The results demonstrate that the MoS2/CoFe2O4/MIL-101(Fe) nanocomposite exhibits high catalytic activity in the reduction of 4-nitrophenol (4-NP), 2-nitrophenol (2-NP), 2-nitroaniline (2-NA), and 4-nitroaniline (4-NA) to their respective amine derivatives. The conversion rates are notably high, with pseudo-first-order rate constants of 0.386, 0.086, 0.064, and 0.117 min−1, respectively. Specifically, the complete conversion of these pollutants was achieved within 18–21 minutes, demonstrating the exceptional efficiency of the nanocomposite. Furthermore, the study explored the influence of catalyst dosage and reducing agent concentration on the reduction process's effectiveness. Notably, the magnetic nature of the nanocomposite facilitates its facile separation from the reaction mixture using an external magnet, significantly simplifying its recovery and reuse.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高度分散在 CoFe2O4/MIL-101(Fe)金属有机框架上的花状 MoS2 微球:用于还原水中有毒硝基芳烃的可回收磁性催化剂
在本研究中,我们报告了新型磁性 MoS2/CoFe2O4/MIL101-(Fe)纳米复合催化剂的合成和表征,这种催化剂设计用于在常温下将有毒的硝基芳香族化合物(如硝基苯酚和硝基苯胺)高效还原为相应的胺。这种纳米复合材料是通过水热法将金属有机框架(MIL101-(Fe))、花朵状 MoS2 微球和 CoFe2O4 纳米晶体整合在一起而制成的。利用一系列分析技术,包括 XRD、FT-IR、FE-SEM、EDX、VSM、BET 表面积分析和 zeta 电位测量,对纳米复合材料的结构和理化性质进行了深入研究。研究结果表明,MoS2/CoFe2O4/MIL-101(Fe) 纳米复合材料在将 4-硝基苯酚 (4-NP)、2-硝基苯酚 (2-NP)、2-硝基苯胺 (2-NA) 和 4-硝基苯胺 (4-NA) 还原成各自的胺衍生物过程中表现出很高的催化活性。转化率明显较高,伪一阶速率常数分别为 0.386、0.086、0.064 和 0.117 min-1。具体而言,这些污染物在 18-21 分钟内就实现了完全转化,这表明纳米复合材料具有极高的效率。此外,研究还探讨了催化剂用量和还原剂浓度对还原过程效果的影响。值得注意的是,纳米复合材料的磁性使其能够利用外部磁铁从反应混合物中轻松分离出来,从而大大简化了其回收和再利用过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover Back cover Synthesis of 3D composite materials based on ultrathin LDH nanowalls grown in situ on graphene surface and fast-response NO2 gas sensing performance at room temperature† Variations in crystals of flufenamic acid of its methyl and tert-butyl analogues as impurities as determined by partial dissolutions†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1