Synthesis of naphthoquinone-fused enediyne sugar polysulfates for nanomolar inhibition of coronavirus†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-11-06 DOI:10.1039/D4NJ03596H
Xiaohua Huang, Jing Miao, Hongyu Zheng, Lingjing Mao, Zhe Ding, Xinyu Yu, Jingtao Xu, Jiaming Lan and Aiguo Hu
{"title":"Synthesis of naphthoquinone-fused enediyne sugar polysulfates for nanomolar inhibition of coronavirus†","authors":"Xiaohua Huang, Jing Miao, Hongyu Zheng, Lingjing Mao, Zhe Ding, Xinyu Yu, Jingtao Xu, Jiaming Lan and Aiguo Hu","doi":"10.1039/D4NJ03596H","DOIUrl":null,"url":null,"abstract":"<p >It has been four years since the emergence of the COVID-19 pandemic, and the ongoing threat it poses to human health and life underscores the continued need for the development of antiviral medications as a means of mitigating future viral outbreaks. In this study, we present a novel class of antiviral compounds, naphthoquinone-fused enediyne sugar polysulfates, which have demonstrated efficacy against coronaviruses by targeting the conserved receptor binding domain on spike proteins. These compounds induce irreversible damage to the viral proteins that are essential for binding to host cells, resulting in inhibition of viral infection at nanomolar concentrations with minimal cytotoxic effects. Notably, the selectivity index of these compounds exceeds 50 000, suggesting significant potential for further development in antiviral therapeutics against coronavirus.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19379-19383"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03596h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It has been four years since the emergence of the COVID-19 pandemic, and the ongoing threat it poses to human health and life underscores the continued need for the development of antiviral medications as a means of mitigating future viral outbreaks. In this study, we present a novel class of antiviral compounds, naphthoquinone-fused enediyne sugar polysulfates, which have demonstrated efficacy against coronaviruses by targeting the conserved receptor binding domain on spike proteins. These compounds induce irreversible damage to the viral proteins that are essential for binding to host cells, resulting in inhibition of viral infection at nanomolar concentrations with minimal cytotoxic effects. Notably, the selectivity index of these compounds exceeds 50 000, suggesting significant potential for further development in antiviral therapeutics against coronavirus.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于抑制冠状病毒的纳摩尔级萘醌融合烯二炔糖多硫酸盐的合成†
COVID-19 大流行已经过去四年了,它对人类健康和生命构成的威胁仍在持续,这凸显了开发抗病毒药物作为缓解未来病毒爆发的手段的持续必要性。在本研究中,我们介绍了一类新型抗病毒化合物--萘醌融合烯二炔糖多硫酸盐,这种化合物通过靶向尖峰蛋白上保守的受体结合域,对冠状病毒具有疗效。这些化合物会对与宿主细胞结合所必需的病毒蛋白质造成不可逆的破坏,从而在纳摩尔浓度下抑制病毒感染,并将细胞毒性效应降至最低。值得注意的是,这些化合物的选择性指数超过 50,000,这表明它们在进一步开发冠状病毒抗病毒疗法方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover A transition-metal-free catalytic reduction of benzylic alcohols and alkenes and N-formylation of nitroarenes mediated by iodide ions and formic acid† Construction of morphology-controllable NiS/Ni3S4 hybrid nanosheets for all-solid-state asymmetric supercapacitors† Enhanced solar steam generation using carbonized Platanus acerifolia fruit with fibrous channels for improved water transport†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1