Salma Shaheen, Jahan Zaib Arshad, Mansoor Haider, Adnan Ashraf, Muhammad Mahboob Ahmad, Muhammad Ashfaq, Mostafa A. Ismail, Tayyaba Najam and Syed Shoaib Ahmad Shah
{"title":"Synthesis and biological evaluation of β-lactams as potent antidiabetic agents†","authors":"Salma Shaheen, Jahan Zaib Arshad, Mansoor Haider, Adnan Ashraf, Muhammad Mahboob Ahmad, Muhammad Ashfaq, Mostafa A. Ismail, Tayyaba Najam and Syed Shoaib Ahmad Shah","doi":"10.1039/D4NJ02535K","DOIUrl":null,"url":null,"abstract":"<p >α-Glucosidase inhibitors seem to be most effective in the treatment of diabetes. β-Lactams have been reported to have some antidiabetic properties with α-glucosidase inhibitory activity. The current study aims to evaluate the potential of newly synthesized β-lactams <strong>B8–B14</strong> as α-glucosidase inhibitors that can help to control high blood glucose levels in type 2 diabetes mellitus. The synthesized 3-nitrophenyl imine derivatives (1 eq.) reacted with ethenone (1 eq.) in benzene by a Staudinger cycloaddition reaction to afford β-lactams <strong>B8–B14</strong>, which was confirmed by advanced spectroscopic techniques and elemental analysis. The antihyperglycemic studies revealed that compounds <strong>B8</strong>, <strong>B9</strong> and <strong>B12–B14</strong> at a dosage of 5 mg kg<small><sup>−1</sup></small> and after 24 h of administration showed a higher percentage decrease in blood sugar (12.61–21.07%) than the reference drug glibenclamide (11.74%). In line with <em>in vitro</em> studies, β-lactams <strong>B8</strong> and <strong>B9</strong> proved to be potent inhibitors of α-glucosidase enzyme with IC<small><sub>50</sub></small> values 3.33 μM and 2.21 μM, respectively, higher than the standard drug acarbose (IC<small><sub>50</sub></small> = 5.47 μM). Further, <em>in vivo</em> experiments confirmed that the most potent antidiabetic agents <strong>B8</strong> and <strong>B9</strong> significantly decrease the ALT level (71.1–74.3%) to prevent liver injury induced by diabetes. The higher antioxidant potential confirmed the role of <strong>B9</strong> as a lead antidiabetic agent to manage the ROS generated by diabetes. AutoDock Vina was used to identify the catalytic sites of α-glucosidase and to remove water molecules and add hydrogen and Kollman charges to the protein structure. In molecular docking studies, <strong>B9</strong> fits tightly within the catalytic pocket of the α-glucosidase enzyme with a binding affinity of −9.1 kcal mol<small><sup>−1</sup></small>, supporting its potential as a strong α-glucosidase inhibitor. The most potent compound, <strong>B9</strong>, was found to have optimal lipophilicity (2.63), the highest drug-likeness (86.9%) and excellent gastrointestinal absorption that are suitable for bioavailability and drug design. Moreover, these physiochemical properties also showed excellent correlation with the α-glucosidase inhibitory and antidiabetic activity. Overall, these excellent results suggest that the most potent compound, <strong>B9</strong>, has the potential to develop as a therapeutic drug in the future to treat diabetes with α-glucosidase inhibitory activity.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19427-19440"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj02535k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
α-Glucosidase inhibitors seem to be most effective in the treatment of diabetes. β-Lactams have been reported to have some antidiabetic properties with α-glucosidase inhibitory activity. The current study aims to evaluate the potential of newly synthesized β-lactams B8–B14 as α-glucosidase inhibitors that can help to control high blood glucose levels in type 2 diabetes mellitus. The synthesized 3-nitrophenyl imine derivatives (1 eq.) reacted with ethenone (1 eq.) in benzene by a Staudinger cycloaddition reaction to afford β-lactams B8–B14, which was confirmed by advanced spectroscopic techniques and elemental analysis. The antihyperglycemic studies revealed that compounds B8, B9 and B12–B14 at a dosage of 5 mg kg−1 and after 24 h of administration showed a higher percentage decrease in blood sugar (12.61–21.07%) than the reference drug glibenclamide (11.74%). In line with in vitro studies, β-lactams B8 and B9 proved to be potent inhibitors of α-glucosidase enzyme with IC50 values 3.33 μM and 2.21 μM, respectively, higher than the standard drug acarbose (IC50 = 5.47 μM). Further, in vivo experiments confirmed that the most potent antidiabetic agents B8 and B9 significantly decrease the ALT level (71.1–74.3%) to prevent liver injury induced by diabetes. The higher antioxidant potential confirmed the role of B9 as a lead antidiabetic agent to manage the ROS generated by diabetes. AutoDock Vina was used to identify the catalytic sites of α-glucosidase and to remove water molecules and add hydrogen and Kollman charges to the protein structure. In molecular docking studies, B9 fits tightly within the catalytic pocket of the α-glucosidase enzyme with a binding affinity of −9.1 kcal mol−1, supporting its potential as a strong α-glucosidase inhibitor. The most potent compound, B9, was found to have optimal lipophilicity (2.63), the highest drug-likeness (86.9%) and excellent gastrointestinal absorption that are suitable for bioavailability and drug design. Moreover, these physiochemical properties also showed excellent correlation with the α-glucosidase inhibitory and antidiabetic activity. Overall, these excellent results suggest that the most potent compound, B9, has the potential to develop as a therapeutic drug in the future to treat diabetes with α-glucosidase inhibitory activity.