HAase/GSH dual-responsive mesoporous organosilica nanoparticles for synergistic photodynamic/photothermal/pharmacological antibacterial therapy†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-11-11 DOI:10.1039/D4NJ03287J
Wei Guo, Yunhan Huang, Jingrui Chang, Xinyu Wang and Bo Lu
{"title":"HAase/GSH dual-responsive mesoporous organosilica nanoparticles for synergistic photodynamic/photothermal/pharmacological antibacterial therapy†","authors":"Wei Guo, Yunhan Huang, Jingrui Chang, Xinyu Wang and Bo Lu","doi":"10.1039/D4NJ03287J","DOIUrl":null,"url":null,"abstract":"<p >Mesoporous organosilica nanoparticles (MONs) are promising drug carriers with excellent biocompatibility and biodegradability. In the context of the bacterial infection microenvironment, a hyaluronidase (HAase)/glutathione (GSH) dual-responsive degradable nanoplatform based on MON (ICG/CIP@MON@PEI-HA) has been developed for the multimodal treatment of bacterial infection. In this work, ciprofloxacin (CIP) and indocyanine green (ICG) are physically adsorbed into the MON, polyethyleneimine (PEI) is electrostatically adsorbed onto the MON surface, and hyaluronic acid (HA) is grafted onto the amino groups of PEI <em>via</em> the amide bonds. The overexpression of HAase at bacterial infection sites enables HA shell degradation, and positively charged PEI is exposed, which facilitates nanoparticle binding to negatively charged bacteria. Also, owing to the protonation of amine groups, PEI is swelled in the acidic environment of bacterial infection, which favours drug release. Subsequently, overexpressed GSH breaks the disulfide bonds in the MON, triggering structural degradation that inhibits carrier accumulation and accelerates drug release even further. According to <em>in vitro</em> antibacterial evaluations, the antibacterial effect can be enhanced to 100% when phototherapy and pharmaceutical therapy are combined. <em>In vitro</em> cytotoxicity assays have demonstrated that ICG/CIP@MON@PEI-HA possesses excellent biocompatibility. Therefore, this study offers a potential approach for developing biodegradable nanoplatforms for the combined treatment of bacterial infection.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 46","pages":" 19462-19471"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03287j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mesoporous organosilica nanoparticles (MONs) are promising drug carriers with excellent biocompatibility and biodegradability. In the context of the bacterial infection microenvironment, a hyaluronidase (HAase)/glutathione (GSH) dual-responsive degradable nanoplatform based on MON (ICG/CIP@MON@PEI-HA) has been developed for the multimodal treatment of bacterial infection. In this work, ciprofloxacin (CIP) and indocyanine green (ICG) are physically adsorbed into the MON, polyethyleneimine (PEI) is electrostatically adsorbed onto the MON surface, and hyaluronic acid (HA) is grafted onto the amino groups of PEI via the amide bonds. The overexpression of HAase at bacterial infection sites enables HA shell degradation, and positively charged PEI is exposed, which facilitates nanoparticle binding to negatively charged bacteria. Also, owing to the protonation of amine groups, PEI is swelled in the acidic environment of bacterial infection, which favours drug release. Subsequently, overexpressed GSH breaks the disulfide bonds in the MON, triggering structural degradation that inhibits carrier accumulation and accelerates drug release even further. According to in vitro antibacterial evaluations, the antibacterial effect can be enhanced to 100% when phototherapy and pharmaceutical therapy are combined. In vitro cytotoxicity assays have demonstrated that ICG/CIP@MON@PEI-HA possesses excellent biocompatibility. Therefore, this study offers a potential approach for developing biodegradable nanoplatforms for the combined treatment of bacterial infection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于协同光动力/光热/药物抗菌治疗的 HAase/GSH 双响应介孔有机硅纳米粒子†。
介孔有机硅纳米颗粒(MONs)是一种具有良好生物相容性和生物降解性的药物载体。针对细菌感染的微环境,我们开发了一种基于 MON 的透明质酸酶(HAase)/谷胱甘肽(GSH)双响应可降解纳米平台(ICG/CIP@MON@PEI-HA),用于细菌感染的多模式治疗。在这项工作中,环丙沙星(CIP)和吲哚菁绿(ICG)被物理吸附到 MON 中,聚乙烯亚胺(PEI)被静电吸附到 MON 表面,透明质酸(HA)通过酰胺键接枝到 PEI 的氨基上。细菌感染部位过量表达 HA 酶可使 HA 外壳降解,带正电荷的 PEI 暴露出来,从而促进纳米颗粒与带负电荷的细菌结合。此外,由于胺基团的质子化作用,PEI 在细菌感染的酸性环境中膨胀,有利于药物释放。随后,过量表达的 GSH 会打断 MON 中的二硫键,引发结构降解,从而抑制载体积累,进一步加速药物释放。根据体外抗菌评估,当光疗和药物疗法结合使用时,抗菌效果可提高到 100%。体外细胞毒性试验表明,ICG/CIP@MON@PEI-HA 具有良好的生物相容性。因此,这项研究为开发生物可降解纳米平台联合治疗细菌感染提供了一种潜在的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover Correction: Nonadiabatic molecular dynamics simulations shed light on the timescale of furylfulgide photocyclisation Enhancement of smoke and toxic gas suppression during combustion and improvement of the mechanical properties of epoxy resin by incorporation of a modified MOF material containing the phosphoheterophene group† N/O co-doped edamame shell derived porous carbon materials for high-performance supercapacitors†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1