Shulong Chen, Kun Li, Guanglong Wang, Weidan Ding, Xiaoli Zhang, Yishen Zhao, Yang Yang, Jingbo Chen
{"title":"Microcellular foamed bilayer iPP/CNTs-HDPE/CNTs nanocomposites for electromagnetic interference shielding application","authors":"Shulong Chen, Kun Li, Guanglong Wang, Weidan Ding, Xiaoli Zhang, Yishen Zhao, Yang Yang, Jingbo Chen","doi":"10.1007/s10965-024-04207-w","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing electromagnetic (EM) radiation pollution necessitates the development of low-cost, lightweight, and high absorption-dominated electromagnetic interference (EMI) shielding composites. Herein, the isotactic polypropylene (iPP)/high-density polyethylene (HDPE)/carbon nanotubes (CNTs) nanocomposite foams were fabricated using a simple melt blending method, followed by an eco-friendly foaming process with supercritical CO<sub>2</sub> as the blowing agent. The asymmetric bilayer structure of resulting iPP/HDPE/CNTs nanocomposite foams was produced by integrating iPP/CNTs and HDPE/CNTs segments, followed by a foaming process. Due to the different melt strength and viscoelasticity of iPP and HDPE, this asymmetric bilayer nanocomposite foams with identical CNTs content exhibited diverse structures and unique EMI shielding properties. Specifically, the HDPE/CNTs layer served as an absorption layer due to its relatively low electrical conductivity, whereas iPP/CNTs layer functioned as a reflective layer owing to its high electrical conductivity, leading to the formation of a distinct absorption-reflection-reabsorption interface within the iPP/HDPE/CNTs nanocomposite foams. Finally, the unique asymmetric structure endowed the nanocomposite foams with superior EMI shielding effectiveness of 37.32 dB, as well as a high absorption coefficient of 0.60, rendering the nanocomposite foams absorption-dominated EMI shielding materials and effectively preventing secondary EM wave pollution.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04207-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing electromagnetic (EM) radiation pollution necessitates the development of low-cost, lightweight, and high absorption-dominated electromagnetic interference (EMI) shielding composites. Herein, the isotactic polypropylene (iPP)/high-density polyethylene (HDPE)/carbon nanotubes (CNTs) nanocomposite foams were fabricated using a simple melt blending method, followed by an eco-friendly foaming process with supercritical CO2 as the blowing agent. The asymmetric bilayer structure of resulting iPP/HDPE/CNTs nanocomposite foams was produced by integrating iPP/CNTs and HDPE/CNTs segments, followed by a foaming process. Due to the different melt strength and viscoelasticity of iPP and HDPE, this asymmetric bilayer nanocomposite foams with identical CNTs content exhibited diverse structures and unique EMI shielding properties. Specifically, the HDPE/CNTs layer served as an absorption layer due to its relatively low electrical conductivity, whereas iPP/CNTs layer functioned as a reflective layer owing to its high electrical conductivity, leading to the formation of a distinct absorption-reflection-reabsorption interface within the iPP/HDPE/CNTs nanocomposite foams. Finally, the unique asymmetric structure endowed the nanocomposite foams with superior EMI shielding effectiveness of 37.32 dB, as well as a high absorption coefficient of 0.60, rendering the nanocomposite foams absorption-dominated EMI shielding materials and effectively preventing secondary EM wave pollution.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.