Thermophysical Properties and PC-SAFT Modeling of Binary Mixtures (Glycerol + 1,2-Ethanediol and Glycerol + 1,2-Propanediol) and Ternary Mixtures (Glycerol + Water + 1,2-Ethanediol, Glycerol + Water + 1,2-Propanediol, and Glycerol + Water + 1,3-Butanediol), at Various Temperatures and Atmospheric Pressure
{"title":"Thermophysical Properties and PC-SAFT Modeling of Binary Mixtures (Glycerol + 1,2-Ethanediol and Glycerol + 1,2-Propanediol) and Ternary Mixtures (Glycerol + Water + 1,2-Ethanediol, Glycerol + Water + 1,2-Propanediol, and Glycerol + Water + 1,3-Butanediol), at Various Temperatures and Atmospheric Pressure","authors":"Fouzia Amireche, Ariel Hernández","doi":"10.1007/s10765-024-03462-9","DOIUrl":null,"url":null,"abstract":"<div><p>The current study contributes to research on some thermophysical properties of ternary aqueous mixtures containing glycerol with 1,2-ethanediol, 1,2-propanediol, or 1,3-butanediol and their corresponding binary mixtures. Experimental measurements concerned density and refractive index at various temperature and under atmospheric pressure. PC-SAFT was applied successfully for predicting liquid density for the mixtures and different mixing rules of refractive index were used for modeling the experimental values of refractive index. The experimental data were also used to calculate the excess molar volumes, <span>\\(V_{123}^E\\)</span>, and refractive index changes on mixing, <span>\\(\\Delta n_{D,123}\\)</span>, for the ternary systems. These were subsequently compared to results obtained with a variety of semi-empirical methods using binary system results. On the other hand, the following derived properties were computed for each binary mixture, based on temperature and glycerol concentration: excess molar volumes, <span>\\(V^E\\)</span>, partial molar volumes, <span>\\(\\overline{V}_i\\)</span>, apparent molar volumes, <span>\\(V_{\\theta i}\\)</span>, partial molar volumes at infinite dilution, <span>\\(\\overline{V}_i ^{\\infty }\\)</span>, excess partial molar volume at infinite dilution, <span>\\(V_i ^{E \\infty }\\)</span>, isobaric thermal expansions, <span>\\(\\alpha\\)</span>, excess thermal expansions, <span>\\(\\alpha ^E\\)</span>, and refractive index deviations, <span>\\(\\Delta n_D\\)</span>. Infrared spectroscopy analysis was also carried out at atmospheric temperature and pressure. Infrared spectroscopy analysis was also carried out at ambient temperature and pressure. All the measured and calculated properties demonstrate a significant impact of molecular structure, including the size, shape, and length of the carbon chain. As expected, the infrared spectra of these mixtures show a strong potential for hydrogen bonding.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03462-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current study contributes to research on some thermophysical properties of ternary aqueous mixtures containing glycerol with 1,2-ethanediol, 1,2-propanediol, or 1,3-butanediol and their corresponding binary mixtures. Experimental measurements concerned density and refractive index at various temperature and under atmospheric pressure. PC-SAFT was applied successfully for predicting liquid density for the mixtures and different mixing rules of refractive index were used for modeling the experimental values of refractive index. The experimental data were also used to calculate the excess molar volumes, \(V_{123}^E\), and refractive index changes on mixing, \(\Delta n_{D,123}\), for the ternary systems. These were subsequently compared to results obtained with a variety of semi-empirical methods using binary system results. On the other hand, the following derived properties were computed for each binary mixture, based on temperature and glycerol concentration: excess molar volumes, \(V^E\), partial molar volumes, \(\overline{V}_i\), apparent molar volumes, \(V_{\theta i}\), partial molar volumes at infinite dilution, \(\overline{V}_i ^{\infty }\), excess partial molar volume at infinite dilution, \(V_i ^{E \infty }\), isobaric thermal expansions, \(\alpha\), excess thermal expansions, \(\alpha ^E\), and refractive index deviations, \(\Delta n_D\). Infrared spectroscopy analysis was also carried out at atmospheric temperature and pressure. Infrared spectroscopy analysis was also carried out at ambient temperature and pressure. All the measured and calculated properties demonstrate a significant impact of molecular structure, including the size, shape, and length of the carbon chain. As expected, the infrared spectra of these mixtures show a strong potential for hydrogen bonding.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.