Genuine N-partite entanglement in Schwarzschild-de Sitter black hole spacetime

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS The European Physical Journal C Pub Date : 2024-11-27 DOI:10.1140/epjc/s10052-024-13602-y
Shu-Min Wu, Xiao-Wei Teng, Xiao-Li Huang, Jianbo Lu
{"title":"Genuine N-partite entanglement in Schwarzschild-de Sitter black hole spacetime","authors":"Shu-Min Wu,&nbsp;Xiao-Wei Teng,&nbsp;Xiao-Li Huang,&nbsp;Jianbo Lu","doi":"10.1140/epjc/s10052-024-13602-y","DOIUrl":null,"url":null,"abstract":"<div><p>Complex quantum information tasks in a gravitational background require multipartite entanglement for effective processing. Therefore, it is necessary to investigate the properties of multipartite entanglement in a relativistic setting. In this paper, we study genuine N-partite entanglement of massless Dirac fields in the Schwarzschild-de Sitter (SdS) spacetime, characterized by the presence of a black hole event horizon (BEH) and a cosmological event horizon (CEH). We obtain the general analytical expression of genuine N-partite entanglement shared by <i>n</i> observers near BEH and <i>m</i> (<span>\\(n+m=N\\)</span>) observers near CEH. It is shown that genuine N-partite entanglement monotonically decreases with the decrease of the mass of the black hole, suggesting that the Hawking effect of the black hole destroys quantum entanglement. It is interesting to note that genuine N-partite entanglement is a non-monotonic function of the cosmological constant, meaning that the Hawking effect of the expanding universe can enhance quantum entanglement. This result contrasts with multipartite entanglement in single-event horizon spacetime, offering a new perspective on the Hawking effect in multi-event horizon spacetime.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13602-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13602-y","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

Complex quantum information tasks in a gravitational background require multipartite entanglement for effective processing. Therefore, it is necessary to investigate the properties of multipartite entanglement in a relativistic setting. In this paper, we study genuine N-partite entanglement of massless Dirac fields in the Schwarzschild-de Sitter (SdS) spacetime, characterized by the presence of a black hole event horizon (BEH) and a cosmological event horizon (CEH). We obtain the general analytical expression of genuine N-partite entanglement shared by n observers near BEH and m (\(n+m=N\)) observers near CEH. It is shown that genuine N-partite entanglement monotonically decreases with the decrease of the mass of the black hole, suggesting that the Hawking effect of the black hole destroys quantum entanglement. It is interesting to note that genuine N-partite entanglement is a non-monotonic function of the cosmological constant, meaning that the Hawking effect of the expanding universe can enhance quantum entanglement. This result contrasts with multipartite entanglement in single-event horizon spacetime, offering a new perspective on the Hawking effect in multi-event horizon spacetime.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
施瓦兹希尔德-德-西特黑洞时空中的真正 N 部分纠缠
引力背景下的复杂量子信息任务需要多方纠缠才能有效处理。因此,有必要研究相对论环境下的多方纠缠特性。本文研究了施瓦兹希尔德-德-西特(SdS)时空中无质量狄拉克场的真正 N 部分纠缠,其特征是存在黑洞事件穹界(BEH)和宇宙学事件穹界(CEH)。我们得到了在BEH附近由n个观测者和在CEH附近由m个((n+m=N))观测者共享的真正N-partite纠缠的一般分析表达式。结果表明,真正的 N 部分纠缠随着黑洞质量的减小而单调递减,这表明黑洞的霍金效应破坏了量子纠缠。有趣的是,真正的 N 部分纠缠是宇宙常数的非单调函数,这意味着宇宙膨胀的霍金效应可以增强量子纠缠。这一结果与单事件视界时空中的多方纠缠形成了鲜明对比,为多事件视界时空中的霍金效应提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
期刊最新文献
Probing sterile neutrino freeze-in at stronger coupling Phenomenology of extended multiHiggs doublet models with \(S_4\) family symmetry Productions of bottom and bottom-strange mesons in pion and kaon induced reactions Non-Kerr constraints using binary black hole inspirals considering phase modifications up to 4 PN order Hydrodynamic modes in holographic multiple-axion model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1