Güneş Akın Doğan, Richard Wascher, Georg Avramidis, Wolfgang Viöl, Christoph Gerhard
{"title":"Influence of wood modification on parameter settings and treatment results in CO2 laser structuring of beech veneers","authors":"Güneş Akın Doğan, Richard Wascher, Georg Avramidis, Wolfgang Viöl, Christoph Gerhard","doi":"10.1186/s40712-024-00192-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the possible influences of thermal modification of wood on the quality of laser texturing of beech veneers are investigated by comparing native and thermally modified samples. By varying the process parameters of a CO<sub>2</sub> laser, the surfaces of both types of veneer were textured and the resulting surface roughness and aspect ratios were analyzed in order to evaluate the efficiency of the laser texturing and the quality of the textures produced. The main results show that the thermal modification of the wood influences the cutting widths, the removal depths, and the surface roughness, with thermally modified veneers generally having larger cutting widths and different removal depths compared to native veneers, indicating the influence of the wood modifications on the material physical and chemical properties and their interaction with the laser processing. Furthermore, the study shows how the laser processing parameters—feed rate and laser power—influence the surface quality and structural dimensions of the engraved lines, and establishes that the moisture content of the wood has a significant influence on its thermal conductivity and thus on the laser cutting process. The research work highlights the complexity of laser texturing of wood and emphasizes the need to take into account the change in the intrinsic properties of the material as a result of thermal modification.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"19 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-024-00192-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-024-00192-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the possible influences of thermal modification of wood on the quality of laser texturing of beech veneers are investigated by comparing native and thermally modified samples. By varying the process parameters of a CO2 laser, the surfaces of both types of veneer were textured and the resulting surface roughness and aspect ratios were analyzed in order to evaluate the efficiency of the laser texturing and the quality of the textures produced. The main results show that the thermal modification of the wood influences the cutting widths, the removal depths, and the surface roughness, with thermally modified veneers generally having larger cutting widths and different removal depths compared to native veneers, indicating the influence of the wood modifications on the material physical and chemical properties and their interaction with the laser processing. Furthermore, the study shows how the laser processing parameters—feed rate and laser power—influence the surface quality and structural dimensions of the engraved lines, and establishes that the moisture content of the wood has a significant influence on its thermal conductivity and thus on the laser cutting process. The research work highlights the complexity of laser texturing of wood and emphasizes the need to take into account the change in the intrinsic properties of the material as a result of thermal modification.