Mengtian Huo
(, ), Jianhang Sun
(, ), Wei Liu
(, ), Qianyu Li
(, ), Jinfa Chang
(, ), Zihao Xing
(, )
{"title":"Sulfur and nitrogen dual-doped graphdiyne as a highly efficient metal-free electrocatalyst for the Zn-air battery","authors":"Mengtian Huo \n (, ), Jianhang Sun \n (, ), Wei Liu \n (, ), Qianyu Li \n (, ), Jinfa Chang \n (, ), Zihao Xing \n (, )","doi":"10.1007/s40843-024-3126-1","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfur and nitrogen dual-doped graphdiyne (NSGD) has been found to be a promising catalyst for oxygen reduction reaction (ORR) through a combination of density functional theory (DFT) calculation and the application of oxygen evolution reaction (OER) experiments. The DFT analysis suggests that adsorption characteristics are significantly altered by resulting nitrogen and sulfur doping, which in turn affect the ORR activity. In particular, the NSGD-800 catalyst exhibits an increased ORR half-wave potential of 0.754 V, with enhanced stability due to the synergy effect of N and S. Meanwhile, thanks to the unique acetylene-rich structure of graphdiyne to anchor metal oxides with strong d-<i>π</i> interactions, the activity and stability of com-RuO<sub>2</sub> for OER were significantly enhanced by mixing with NSGD-800. The zinc-air battery (ZAB) with NSGD shows a much higher peak power density (87.3 mW cm<sup>−2</sup>) and longer charge-discharge cycle stability compared with the ZAB with Pt/C, making it an excellent candidate air electrode for ZAB and other energy storage and conversion devices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"4005 - 4012"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3126-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur and nitrogen dual-doped graphdiyne (NSGD) has been found to be a promising catalyst for oxygen reduction reaction (ORR) through a combination of density functional theory (DFT) calculation and the application of oxygen evolution reaction (OER) experiments. The DFT analysis suggests that adsorption characteristics are significantly altered by resulting nitrogen and sulfur doping, which in turn affect the ORR activity. In particular, the NSGD-800 catalyst exhibits an increased ORR half-wave potential of 0.754 V, with enhanced stability due to the synergy effect of N and S. Meanwhile, thanks to the unique acetylene-rich structure of graphdiyne to anchor metal oxides with strong d-π interactions, the activity and stability of com-RuO2 for OER were significantly enhanced by mixing with NSGD-800. The zinc-air battery (ZAB) with NSGD shows a much higher peak power density (87.3 mW cm−2) and longer charge-discharge cycle stability compared with the ZAB with Pt/C, making it an excellent candidate air electrode for ZAB and other energy storage and conversion devices.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.