Bowen Hu
(, ), Yanyun Pang
(, ), Xiaoxue Yang
(, ), Kun Xuan
(, ), Xu Zhang
(, ), Peng Yang
(, )
{"title":"Advancements in dental hard tissue restorative materials and challenge of clinical translation","authors":"Bowen Hu \n (, ), Yanyun Pang \n (, ), Xiaoxue Yang \n (, ), Kun Xuan \n (, ), Xu Zhang \n (, ), Peng Yang \n (, )","doi":"10.1007/s40843-024-3137-4","DOIUrl":null,"url":null,"abstract":"<div><p>Dental hard tissues, primarily enamel and dentin, serving essential functions such as cutting, chewing, speaking, and maintaining facial aesthetics, mainly composed well-aligned hydroxyapatite (HAp) nanocrystals interlaced with a protein matrix. These tissues exhibit remarkable mechanical and aesthetic behaviors. However, once damaged, its ability to self-repair is extremely limited, often accompanied by dentin hypersensitivity (DH). Currently, although dental restorations using synthetic materials and remineralization techniques have made clinical progress, these methods still have limitations that affect their widespread use in clinical applications. Therefore, understanding the formation mechanisms of dental hard tissues and developing high-performance restorative technologies that can mimic natural teeth and meet clinical needs are crucial. This review focuses on the current strategies and research advancements in enamel regeneration and dentin desensitization, and challenges of clinical translation. We emphasize that scientific research should start with clinical needs, and these studies, through translation, ultimately serve the clinic to form a mutually reinforcing virtuous cycle. This review aims to provide a new perspective on the prevention and treatment of dental hard tissues, promote innovation in restorative materials and techniques, and bring better clinical translation products and services to patients.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"3811 - 3832"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3137-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dental hard tissues, primarily enamel and dentin, serving essential functions such as cutting, chewing, speaking, and maintaining facial aesthetics, mainly composed well-aligned hydroxyapatite (HAp) nanocrystals interlaced with a protein matrix. These tissues exhibit remarkable mechanical and aesthetic behaviors. However, once damaged, its ability to self-repair is extremely limited, often accompanied by dentin hypersensitivity (DH). Currently, although dental restorations using synthetic materials and remineralization techniques have made clinical progress, these methods still have limitations that affect their widespread use in clinical applications. Therefore, understanding the formation mechanisms of dental hard tissues and developing high-performance restorative technologies that can mimic natural teeth and meet clinical needs are crucial. This review focuses on the current strategies and research advancements in enamel regeneration and dentin desensitization, and challenges of clinical translation. We emphasize that scientific research should start with clinical needs, and these studies, through translation, ultimately serve the clinic to form a mutually reinforcing virtuous cycle. This review aims to provide a new perspective on the prevention and treatment of dental hard tissues, promote innovation in restorative materials and techniques, and bring better clinical translation products and services to patients.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.