Developing a Control Strategy for Minimum Airflow Setting Considering CO2 Level and Energy Consumption in a Variable Air Volume System

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2024-11-26 DOI:10.1007/s10765-024-03474-5
Jong Man Lee, Kwang Ho Lee, Jin Woo Moon, Sang Hoon Lee, Tianzhen Hong
{"title":"Developing a Control Strategy for Minimum Airflow Setting Considering CO2 Level and Energy Consumption in a Variable Air Volume System","authors":"Jong Man Lee,&nbsp;Kwang Ho Lee,&nbsp;Jin Woo Moon,&nbsp;Sang Hoon Lee,&nbsp;Tianzhen Hong","doi":"10.1007/s10765-024-03474-5","DOIUrl":null,"url":null,"abstract":"<div><p>In an office building equipped with a Variable Air Volume (VAV) system, this paper introduces a novel method for controlling the minimum supply airflow fraction in each zone’s VAV box, having a capability to consider indoor CO<sub>2</sub> level and energy consumption. The EnergyPlus simulation using the medium office prototype model was employed, which evaluated the performance of the energy and CO<sub>2</sub> concentration for five VAV box airflow control strategies. The paper focuses on CO<sub>2</sub> concentration-based airflow control method and compares it with other four methods including conventional single-max, reduced minimum single-max, demand-controlled ventilation(DCV), and dualmax control methods according to guidelines and common practices. The newly proposed control strategy directly correlates the minimum airflow fraction to CO<sub>2</sub> concentration. A general trend emerged when comparing CO<sub>2</sub> concentrations—lower minimum airflow fractions were associated with higher concentrations. The proposed control method effectively maintained low CO<sub>2</sub> concentrations and enabled a lower airflow fraction contributing to energy consumption reduction. It was confirmed that heating energy consumption in climate zone 4A, 5B, and 6A showed a maximum saving of approximately 30% compared to the conventional single-max and dual max control strategies. It was found that cooling energy consumption in climate zone 4A and 6A can achieve a maximum saving of approximately 10% compared to the conventional control strategies. The proposed CO<sub>2</sub> concentration-based control logic is promising as it not only improves the indoor air quality lowering the CO<sub>2</sub> concentration in the occupied spaces, but also contributes to HVAC energy savings.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03474-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In an office building equipped with a Variable Air Volume (VAV) system, this paper introduces a novel method for controlling the minimum supply airflow fraction in each zone’s VAV box, having a capability to consider indoor CO2 level and energy consumption. The EnergyPlus simulation using the medium office prototype model was employed, which evaluated the performance of the energy and CO2 concentration for five VAV box airflow control strategies. The paper focuses on CO2 concentration-based airflow control method and compares it with other four methods including conventional single-max, reduced minimum single-max, demand-controlled ventilation(DCV), and dualmax control methods according to guidelines and common practices. The newly proposed control strategy directly correlates the minimum airflow fraction to CO2 concentration. A general trend emerged when comparing CO2 concentrations—lower minimum airflow fractions were associated with higher concentrations. The proposed control method effectively maintained low CO2 concentrations and enabled a lower airflow fraction contributing to energy consumption reduction. It was confirmed that heating energy consumption in climate zone 4A, 5B, and 6A showed a maximum saving of approximately 30% compared to the conventional single-max and dual max control strategies. It was found that cooling energy consumption in climate zone 4A and 6A can achieve a maximum saving of approximately 10% compared to the conventional control strategies. The proposed CO2 concentration-based control logic is promising as it not only improves the indoor air quality lowering the CO2 concentration in the occupied spaces, but also contributes to HVAC energy savings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
Developing a Control Strategy for Minimum Airflow Setting Considering CO2 Level and Energy Consumption in a Variable Air Volume System Thermophysical Properties and PC-SAFT Modeling of Binary Mixtures (Glycerol + 1,2-Ethanediol and Glycerol + 1,2-Propanediol) and Ternary Mixtures (Glycerol + Water + 1,2-Ethanediol, Glycerol + Water + 1,2-Propanediol, and Glycerol + Water + 1,3-Butanediol), at Various Temperatures and Atmospheric Pressure Correction: Nanoporous Film Layers to Enhance the Performance of Passive Radiative Cooling Paint Mixtures Enhancement in Active Thermal Management Efficiency of Micro/Mini-Pipes Based on Phase Change to Consider Pressure Drop A Composite Microwave Cavity for Liquid Volume Fraction and Simultaneous Phase Permittivity Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1