Simulation of an industrial hydrocracking unit by discrete lumping kinetics mathematical model incorporating catalyst deactivation

IF 1.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Reaction Kinetics, Mechanisms and Catalysis Pub Date : 2024-09-25 DOI:10.1007/s11144-024-02729-4
Zhenming Li, Kang Qin, Mingfeng Li, Dong Guan
{"title":"Simulation of an industrial hydrocracking unit by discrete lumping kinetics mathematical model incorporating catalyst deactivation","authors":"Zhenming Li,&nbsp;Kang Qin,&nbsp;Mingfeng Li,&nbsp;Dong Guan","doi":"10.1007/s11144-024-02729-4","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this work was to establish a process model of a vacuum gas oil industrial hydrocracking. In this model, we divide the lumps by 10 K as the interval, the reaction kinetics model is established based on discrete lumping method. Besides, a relevant catalyst deactivation function for catalyst activity calculation was proposed, which includes the flow and properties of the feed for a long period. The simulated hydrocracking unit is the process with hydrotreating and hydrocracking reactors in series. Therefore, it is necessary to build a hydrotreating model to represent the feed oil properties at the inlet of the hydrocracking reactor. Owing to absence industrial hydrotreating reactor monitor data, the hydrotreating model is established by using the data of the pilot plant loaded with the same catalyst. The hydrocracking reactor model is established through the material balance, heat balance, and momentum balance equations. Multiple sets of data are used to verify the established hydrocracking reactor model, the errors between the calculated value and the actual value of hydrocracking products are basically less than 10 %, and the relative errors of the predicted temperature and pressure are less than 0.5 %. Based on the catalyst deactivation function, the average relative errors of the model can be reduced by 50%. The variation of the reactor along the height is analyzed, and the result shows that the model accuracy simulated the target hydrocracking unit.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3297 - 3320"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02729-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work was to establish a process model of a vacuum gas oil industrial hydrocracking. In this model, we divide the lumps by 10 K as the interval, the reaction kinetics model is established based on discrete lumping method. Besides, a relevant catalyst deactivation function for catalyst activity calculation was proposed, which includes the flow and properties of the feed for a long period. The simulated hydrocracking unit is the process with hydrotreating and hydrocracking reactors in series. Therefore, it is necessary to build a hydrotreating model to represent the feed oil properties at the inlet of the hydrocracking reactor. Owing to absence industrial hydrotreating reactor monitor data, the hydrotreating model is established by using the data of the pilot plant loaded with the same catalyst. The hydrocracking reactor model is established through the material balance, heat balance, and momentum balance equations. Multiple sets of data are used to verify the established hydrocracking reactor model, the errors between the calculated value and the actual value of hydrocracking products are basically less than 10 %, and the relative errors of the predicted temperature and pressure are less than 0.5 %. Based on the catalyst deactivation function, the average relative errors of the model can be reduced by 50%. The variation of the reactor along the height is analyzed, and the result shows that the model accuracy simulated the target hydrocracking unit.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用包含催化剂失活的离散包络动力学数学模型模拟工业加氢裂化装置
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
201
审稿时长
2.8 months
期刊介绍: Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields: -kinetics of homogeneous reactions in gas, liquid and solid phase; -Homogeneous catalysis; -Heterogeneous catalysis; -Adsorption in heterogeneous catalysis; -Transport processes related to reaction kinetics and catalysis; -Preparation and study of catalysts; -Reactors and apparatus. Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.
期刊最新文献
Editorial. Special issue papers presented at the International Conference on Recent Trends in Materials and Devices 2023 Visible light active bismuth chromate/curcuma longa heterostructure for enhancing photocatalytic activity Influence of electron-donating groups on the aniline oxidative coupling reaction with promethazine: a comprehensive experimental and theoretical investigation Xanthan gum templated hydrothermal synthesis of Bi2O3 nano-photocatalyst for the mineralization of chlorophenols prevalent in paper pulp mill Innovative CO2 conversion: harnessing photocatalytic activity in polyvinylidene fluoride/TiO2 electrospun nanofibers for environmental sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1