Guohui Li
(, ), Wenhui Zhao
(, ), Kai Lin
(, ), Kefan Zhao
(, ), Yujing Wang
(, ), Aohua Niu
(, ), Rong Weng
(, ), Kaibo Zheng
(, ), Yanxia Cui
(, )
{"title":"Grain size control in quasi-two-dimensional perovskite thin film via intermediate phase engineering for efficient bound exciton generation","authors":"Guohui Li \n (, ), Wenhui Zhao \n (, ), Kai Lin \n (, ), Kefan Zhao \n (, ), Yujing Wang \n (, ), Aohua Niu \n (, ), Rong Weng \n (, ), Kaibo Zheng \n (, ), Yanxia Cui \n (, )","doi":"10.1007/s40843-024-3127-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-two dimensional (2D) perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency, which stems from their exceptionally high exciton binding energies. The spatial confinement of excitons within smaller grain sizes could enhance the formation of biexcitons leading to higher radiative recombination efficiency. However, the synthesis of high-quality quasi-2D perovskite thin films with controllable grain sizes remains a challenging task. In this study, we present a facile method for achieving quasi-2D perovskite thin films with controllable grain sizes ranging from 500 to 900 nm. This is accomplished by intermediate phase engineering during the film fabrication process. Our results demonstrate that quasi-2D perovskite films with smaller grain sizes exhibit more efficient bound exciton generation and a reduced stimulated emission threshold down to 15.89 µJ cm<sup>−2</sup>. Furthermore, femtosecond transient absorption measurements reveal that the decay time of bound excitons is shorter in quasi-2D perovskites with smaller grain sizes compared to that of those with larger grains at the same pump density, which is 230.5 ps. This observation suggests a more efficient exciton recombination process in the smaller grain size regime. Our findings would offer a promising approach for the development of efficient bound exciton lasers.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"3925 - 3931"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3127-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3127-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-two dimensional (2D) perovskites have emerged as a promising class of materials due to their remarkable photoluminescence efficiency, which stems from their exceptionally high exciton binding energies. The spatial confinement of excitons within smaller grain sizes could enhance the formation of biexcitons leading to higher radiative recombination efficiency. However, the synthesis of high-quality quasi-2D perovskite thin films with controllable grain sizes remains a challenging task. In this study, we present a facile method for achieving quasi-2D perovskite thin films with controllable grain sizes ranging from 500 to 900 nm. This is accomplished by intermediate phase engineering during the film fabrication process. Our results demonstrate that quasi-2D perovskite films with smaller grain sizes exhibit more efficient bound exciton generation and a reduced stimulated emission threshold down to 15.89 µJ cm−2. Furthermore, femtosecond transient absorption measurements reveal that the decay time of bound excitons is shorter in quasi-2D perovskites with smaller grain sizes compared to that of those with larger grains at the same pump density, which is 230.5 ps. This observation suggests a more efficient exciton recombination process in the smaller grain size regime. Our findings would offer a promising approach for the development of efficient bound exciton lasers.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.