Copper(II)-Oxyl Formation in a Biomimetic Complex Activated by Hydrogen Peroxide: The Key Role of Trans-Bis(Hydroxo) Species.

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-12-09 Epub Date: 2024-11-25 DOI:10.1021/acs.inorgchem.4c01948
Ning Cao, Abril C Castro, David Balcells, Unni Olsbye, Ainara Nova
{"title":"Copper(II)-Oxyl Formation in a Biomimetic Complex Activated by Hydrogen Peroxide: The Key Role of Trans-Bis(Hydroxo) Species.","authors":"Ning Cao, Abril C Castro, David Balcells, Unni Olsbye, Ainara Nova","doi":"10.1021/acs.inorgchem.4c01948","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes in nature, such as the copper-based lytic polysaccharide monooxygenases (LPMOs), have gained significant attention for their exceptional performance in C-H activation reactions. The use of H<sub>2</sub>O<sub>2</sub> by LPMOs enzymes has also increased the interest in understanding the oxidation mechanism promoted by this oxidant. While some literature proposes Fenton-like chemistry involving the formation of Cu(II)-OH species and the hydroxyl radical, others contend that Cu(I) activation by H<sub>2</sub>O<sub>2</sub> yields a Cu(II)-oxyl intermediate. In this study, we focused on a bioinspired Cu(I) complex to investigate the reaction mechanism of its oxidation by H<sub>2</sub>O<sub>2</sub> using density functional theory and ab initio molecular dynamics simulations. The latter approach was found to be critical for finding the key Cu intermediates. Our results show that the highly flexible coordination environment of copper strongly influences the nature of the oxidized Cu(II) species. Furthermore, they suggest the favorable formation of <i>trans-</i>Cu(II)-(OH)<sub>2</sub> moieties in low-coordinated Cu(II) species. This <i>trans</i> configuration hinders the formation of Cu(II)-oxyl species, facilitating intramolecular H-abstraction reactions in line with experimentally observed ligand oxidation processes.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":" ","pages":"23082-23094"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c01948","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes in nature, such as the copper-based lytic polysaccharide monooxygenases (LPMOs), have gained significant attention for their exceptional performance in C-H activation reactions. The use of H2O2 by LPMOs enzymes has also increased the interest in understanding the oxidation mechanism promoted by this oxidant. While some literature proposes Fenton-like chemistry involving the formation of Cu(II)-OH species and the hydroxyl radical, others contend that Cu(I) activation by H2O2 yields a Cu(II)-oxyl intermediate. In this study, we focused on a bioinspired Cu(I) complex to investigate the reaction mechanism of its oxidation by H2O2 using density functional theory and ab initio molecular dynamics simulations. The latter approach was found to be critical for finding the key Cu intermediates. Our results show that the highly flexible coordination environment of copper strongly influences the nature of the oxidized Cu(II) species. Furthermore, they suggest the favorable formation of trans-Cu(II)-(OH)2 moieties in low-coordinated Cu(II) species. This trans configuration hinders the formation of Cu(II)-oxyl species, facilitating intramolecular H-abstraction reactions in line with experimentally observed ligand oxidation processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过氧化氢活化的仿生复合物中铜(II)-氧的形成:反式双(羟基)物种的关键作用。
自然界中的酶,如铜基裂解多糖单氧化酶(LPMOs),因其在 C-H 活化反应中的卓越表现而备受关注。LPMOs 酶对 H2O2 的使用也增加了人们对了解这种氧化剂所促进的氧化机制的兴趣。一些文献提出了涉及 Cu(II)-OH 物种和羟基自由基形成的 Fenton 类化学反应,而另一些文献则认为 H2O2 对 Cu(I) 的活化会产生 Cu(II)-oxyl 中间体。在本研究中,我们以生物启发的 Cu(I) 复合物为研究对象,利用密度泛函理论和 ab initio 分子动力学模拟研究其被 H2O2 氧化的反应机理。我们发现后一种方法对于找到关键的 Cu 中间体至关重要。我们的研究结果表明,铜的高度柔性配位环境强烈影响着被氧化的 Cu(II) 物种的性质。此外,这些结果还表明,在低配位的 Cu(II) 物种中形成反式-Cu(II)-(OH)2 分子是有利的。这种反式构型阻碍了 Cu(II)-oxyl 物种的形成,从而促进了分子内 H-萃取反应,这与实验观察到的配体氧化过程是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Highly Porous Scandium(III) Tetrafluoroisophthalate Framework for Adsorptive Separation of Light Alkanes Understanding the Effect of M(III) Choice in Heterodinuclear Polymerization Catalysts. Chiral Supramolecular Proton Conductors: Harnessing Highly Charged Zirconium-Amino Acid Oxo-Clusters. Copper(II)-Oxyl Formation in a Biomimetic Complex Activated by Hydrogen Peroxide: The Key Role of Trans-Bis(Hydroxo) Species. Na5/6[Ni1/3Mn1/6Fe1/6Ti1/3]O2 as an Optimized O3-Type Layered Oxide Positive Electrode Material for Sodium-Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1