{"title":"Hollow Pt-Encrusted RuCu Nanocages Optimizing OH Adsorption for Efficient Hydrogen Oxidation Electrocatalysis.","authors":"Licheng Wei, Yuanting Dong, Wei Yan, Yuqi Zhang, Changhong Zhan, Wei-Hsiang Huang, Chih-Wen Pao, Zhiwei Hu, Haixin Lin, Yong Xu, Hongbo Geng, Xiaoqing Huang","doi":"10.1002/anie.202420177","DOIUrl":null,"url":null,"abstract":"<p><p>As one of the best candidates for hydrogen oxidation reaction (HOR), ruthenium (Ru) has attracted significant attention for anion exchange membrane fuel cells (AEMFCs), although it suffers from sluggish kinetics under alkaline conditions due to its strong hydroxide affinity. In this work, we develop ternary hollow nanocages with Pt epitaxy on RuCu (Pt-RuCu NCs) as efficient HOR catalysts for application in AEMFCs. Experimental characterizations and theoretical calculations confirm that the synergy in optimized Pt8.7-RuCu NCs significantly modifies the electronic structure and coordination environment of Ru, thereby balancing the binding strengths of H* and OH* species, which leads to a markedly enhanced HOR performance. Specifically, the optimized Pt8.7-RuCu NCs/C achieves a mass activity of 5.91 A mgPt+Ru-1, which is ~3.3, ~2.2, and ~15.0 times higher than that of RuCu NCs/C (1.38 A mgRu-1), PtRu/C (1.83 A mgPt+Ru-1) and Pt/C (0.37 A mgPt-1), respectively. Impressively, the specific peak power density of fuel cells reaches 15.9 W mgPt+Ru-1, significantly higher than those of most reported PtRu-based fuel cells.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202420177"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the best candidates for hydrogen oxidation reaction (HOR), ruthenium (Ru) has attracted significant attention for anion exchange membrane fuel cells (AEMFCs), although it suffers from sluggish kinetics under alkaline conditions due to its strong hydroxide affinity. In this work, we develop ternary hollow nanocages with Pt epitaxy on RuCu (Pt-RuCu NCs) as efficient HOR catalysts for application in AEMFCs. Experimental characterizations and theoretical calculations confirm that the synergy in optimized Pt8.7-RuCu NCs significantly modifies the electronic structure and coordination environment of Ru, thereby balancing the binding strengths of H* and OH* species, which leads to a markedly enhanced HOR performance. Specifically, the optimized Pt8.7-RuCu NCs/C achieves a mass activity of 5.91 A mgPt+Ru-1, which is ~3.3, ~2.2, and ~15.0 times higher than that of RuCu NCs/C (1.38 A mgRu-1), PtRu/C (1.83 A mgPt+Ru-1) and Pt/C (0.37 A mgPt-1), respectively. Impressively, the specific peak power density of fuel cells reaches 15.9 W mgPt+Ru-1, significantly higher than those of most reported PtRu-based fuel cells.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.