Radiation Chemistry Reveals the Reaction Mechanisms Involved in the Reduction of Vinylene Carbonate in the Solid Electrolyte Interphase of Lithium-Ion Batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-11-26 DOI:10.1002/cssc.202402091
Yanis Souid, Marin Puget, Daniel Ortiz, Laura Piveteau, Sergey Denisov, Nathalie Herlin-Boime, Mehran Mostafavi, Jean-Pierre Dognon, Sophie Le Caer
{"title":"Radiation Chemistry Reveals the Reaction Mechanisms Involved in the Reduction of Vinylene Carbonate in the Solid Electrolyte Interphase of Lithium-Ion Batteries.","authors":"Yanis Souid, Marin Puget, Daniel Ortiz, Laura Piveteau, Sergey Denisov, Nathalie Herlin-Boime, Mehran Mostafavi, Jean-Pierre Dognon, Sophie Le Caer","doi":"10.1002/cssc.202402091","DOIUrl":null,"url":null,"abstract":"<p><p>A safe and efficient lithium-ion battery requires including an additive in the electrolyte. Among the additives used, vinylene carbonate (VC) is particularly interesting, because it leads to the formation of a stable and protective solid electrolyte interphase (SEI) on the negative electrode. However, the reduction behavior of VC, resulting in polymer formation, is complex, and many questions remain as to the corresponding reaction mechanisms. In particular, in conventional battery studies, it is not possible to observe the transient species formed during reduction. Using picosecond pulsed radiolysis coupled with theoretical chemistry calculations, we showed that, once formed, the anion radical VC·- can undergo ring opening in a few nanoseconds or form (VC)2·-. Within 100 ns, each of these anions then leads to the formation of (VC)(C3H2O3·-). This latter species starts oligomerizing. Eventually, a polymer is formed. Although it mainly consists of poly(VC) units, other chemical functions, such as alkyl groups, are also present, which highlights the role played by water, even in trace amounts. Lastly, we propose a scheme of the reaction mechanisms involved in VC reduction, leading to its polymerization. Clearly, the polymer formed from VC at the SEI of lithium-ion batteries has a complex structure.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402091"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402091","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A safe and efficient lithium-ion battery requires including an additive in the electrolyte. Among the additives used, vinylene carbonate (VC) is particularly interesting, because it leads to the formation of a stable and protective solid electrolyte interphase (SEI) on the negative electrode. However, the reduction behavior of VC, resulting in polymer formation, is complex, and many questions remain as to the corresponding reaction mechanisms. In particular, in conventional battery studies, it is not possible to observe the transient species formed during reduction. Using picosecond pulsed radiolysis coupled with theoretical chemistry calculations, we showed that, once formed, the anion radical VC·- can undergo ring opening in a few nanoseconds or form (VC)2·-. Within 100 ns, each of these anions then leads to the formation of (VC)(C3H2O3·-). This latter species starts oligomerizing. Eventually, a polymer is formed. Although it mainly consists of poly(VC) units, other chemical functions, such as alkyl groups, are also present, which highlights the role played by water, even in trace amounts. Lastly, we propose a scheme of the reaction mechanisms involved in VC reduction, leading to its polymerization. Clearly, the polymer formed from VC at the SEI of lithium-ion batteries has a complex structure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Radiation Chemistry Reveals the Reaction Mechanisms Involved in the Reduction of Vinylene Carbonate in the Solid Electrolyte Interphase of Lithium-Ion Batteries. SUSTAINABLE AND SCALABLE ENZYMATIC PRODUCTION, STRUCTURAL ELUCIDATION, AND BIOLOGICAL EVALUATION OF NOVEL PHLORIZIN ANALOGUES. Unraveling the Role of CuO in CuxO/TiO2 Photocatalyst for the Direct Propylene Epoxidation with O2 in a Fluidized Bed Reactor. Front Cover: Quantitative Analysis and Manipulation of Alkali Metal Cations at the Cathode Surface in Membrane Electrode Assembly Electrolyzers for CO2 Reduction Reactions (ChemSusChem 22/2024) Cover Feature: Diarylformamides as a Safe Reservoir and Room Temperature Source of Ultra-Pure CO in the Context of a ‘Green’ rWGS Reaction (ChemSusChem 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1