A Genetic Bridge Between Medicine and Neurodiversity for Autism.

IF 8.7 1区 生物学 Q1 GENETICS & HEREDITY Annual review of genetics Pub Date : 2024-11-01 DOI:10.1146/annurev-genet-111523-102614
Claire S Leblond, Thomas Rolland, Eli Barthome, Zakaria Mougin, Mathis Fleury, Christine Ecker, Stéf Bonnot-Briey, Freddy Cliquet, Anne-Claude Tabet, Anna Maruani, Boris Chaumette, Jonathan Green, Richard Delorme, Thomas Bourgeron
{"title":"A Genetic Bridge Between Medicine and Neurodiversity for Autism.","authors":"Claire S Leblond, Thomas Rolland, Eli Barthome, Zakaria Mougin, Mathis Fleury, Christine Ecker, Stéf Bonnot-Briey, Freddy Cliquet, Anne-Claude Tabet, Anna Maruani, Boris Chaumette, Jonathan Green, Richard Delorme, Thomas Bourgeron","doi":"10.1146/annurev-genet-111523-102614","DOIUrl":null,"url":null,"abstract":"<p><p>Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"58 1","pages":"487-512"},"PeriodicalIF":8.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-111523-102614","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自闭症医学与神经多样性之间的基因桥梁。
自闭症患者的基因结构和需求各不相同。对于某些个体来说,单个新发或超稀有基因变异对表型特定方面的强度有很大影响,而对于另一些个体来说,则涉及普通人群中常见的数千个变异的组合。多达 30% 的自闭症患者伴有智力障碍、明显的语言发育迟缓、运动发育迟缓和/或癫痫发作,这些变异对患者的影响很大。这些常见变异与注意力缺陷/多动障碍、重度抑郁障碍、受教育程度较高和认知能力较强的个体中发现的变异相同,表明存在重叠的遗传结构。这些基因变异调节染色质重塑和突触蛋白的功能,从而影响神经元回路的连接,并在与每个个体所处环境的相互作用下,影响儿童随后的认知和个人发展轨迹。总体而言,这种遗传异质性反映了自闭症患者的表型多样性,并在生物医学和神经多样性视角之间架起了一座有益的桥梁。我们建议,参与性多学科研究应利用这些信息,更好地了解自闭症患者及其家庭所需的评估、治疗和适应措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of genetics
Annual review of genetics 生物-遗传学
CiteScore
18.30
自引率
0.90%
发文量
17
期刊介绍: The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.
期刊最新文献
Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Apoptotic and Nonapoptotic Cell Death in Caenorhabditis elegans Development. Plant Thermosensors. Recombination Rate Variation in Social Insects: An Adaptive Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1