{"title":"Active trans-corneal drug delivery with ocular adhesive micelles for efficient glaucoma therapy.","authors":"Qiuyu Wei, Chenchen Zhu, Guiping Yuan, Jiahui Jin, Jing Zhang, Wufa Fan, Ying Piao, Shiqun Shao, Sen Lin, Jiajia Xiang, Youqing Shen","doi":"10.1016/j.jconrel.2024.11.050","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and noninvasive drug delivery for glaucoma therapy necessitates prolonged retention on the ocular surface and deep penetration into the cornea. However, inherent physiological defenses such as rapid tear clearance and low cornea permeability present significant challenges that hinder the effectiveness of trans-corneal drug delivery. In this study, we demonstrate the potential of zwitterionic micelles composed of poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate)-block-poly(ε-caprolactone) (OPDEA-PCL) amphiphiles as a biocompatible carrier for trans-corneal drug delivery. These micelles exhibit enhanced adhesion to ocular tissues and resistance to tear clearance due to their unique affinity for cell membranes. These characteristics facilitate adsorptive-mediated transcytosis, significantly augmenting trans-corneal transport and intraocular accumulation of the glaucoma medication brinzolamide (BRZ). As a result, OPDEA-PCL/BRZ formulations effectively normalize intraocular pressure in an open-angle glaucoma rat model, surpassing PEGylated and free BRZ formulations. This research underscores the potential utility of OPDEA-PCL micelles as a promising vehicle for noninvasive topical trans-corneal drug delivery in glaucoma therapy.</p>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.050","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and noninvasive drug delivery for glaucoma therapy necessitates prolonged retention on the ocular surface and deep penetration into the cornea. However, inherent physiological defenses such as rapid tear clearance and low cornea permeability present significant challenges that hinder the effectiveness of trans-corneal drug delivery. In this study, we demonstrate the potential of zwitterionic micelles composed of poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate)-block-poly(ε-caprolactone) (OPDEA-PCL) amphiphiles as a biocompatible carrier for trans-corneal drug delivery. These micelles exhibit enhanced adhesion to ocular tissues and resistance to tear clearance due to their unique affinity for cell membranes. These characteristics facilitate adsorptive-mediated transcytosis, significantly augmenting trans-corneal transport and intraocular accumulation of the glaucoma medication brinzolamide (BRZ). As a result, OPDEA-PCL/BRZ formulations effectively normalize intraocular pressure in an open-angle glaucoma rat model, surpassing PEGylated and free BRZ formulations. This research underscores the potential utility of OPDEA-PCL micelles as a promising vehicle for noninvasive topical trans-corneal drug delivery in glaucoma therapy.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.