Elevated microRNA-187 causes cardiac endothelial dysplasia to promote congenital heart disease through inhibition of NIPBL.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-11-14 DOI:10.1172/JCI178355
Chao Li, Zizheng Tan, Hongdou Li, Xiaoying Yao, Chuyue Peng, Yue Qi, Bo Wu, Tong-Jin Zhao, Chengtao Li, Jianfeng Shen, Hongyan Wang
{"title":"Elevated microRNA-187 causes cardiac endothelial dysplasia to promote congenital heart disease through inhibition of NIPBL.","authors":"Chao Li, Zizheng Tan, Hongdou Li, Xiaoying Yao, Chuyue Peng, Yue Qi, Bo Wu, Tong-Jin Zhao, Chengtao Li, Jianfeng Shen, Hongyan Wang","doi":"10.1172/JCI178355","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac endothelial cells are essential for heart development, and disruption of this process can lead to congenital heart disease (CHD). However, how miRNAs influence cardiac endothelial cells in CHD remains unclear. This study identified elevated miR-187 expression in embryonic heart endothelial cells from CHD fetuses. Using a conditional knock-in model, we showed that increased miR-187 levels in embryonic endothelial cells induce CHD in homozygous fetal mice, closely mirroring human CHD. Mechanistically, miR-187 targets NIPBL, which is responsible for recruiting the cohesin complex and facilitating chromatin accessibility. Consequently, the endothelial cell-specific upregulation of miR-187 inhibited NIPBL, leading to reduced chromatin accessibility and impaired gene expression, which hindered endothelial cell development and ultimately caused heart septal defects and reduced heart size both in vitro and in vivo. Importantly, exogenous miR-187 expression in human cardiac organoids mimicked developmental defects in the cardiac endothelial cells, reversible by NIPBL replenishment. Our findings establish the miR-187/NIPBL axis as a potent regulator that inhibits cardiac endothelial cell development by attenuating the transcription of numerous endothelial genes, with our mouse and human cardiac organoid models effectively replicating severe defects from minor perturbations. This discovery suggests that targeting the miR-187/NIPBL pathway could offer a promising therapeutic approach for CHD.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI178355","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac endothelial cells are essential for heart development, and disruption of this process can lead to congenital heart disease (CHD). However, how miRNAs influence cardiac endothelial cells in CHD remains unclear. This study identified elevated miR-187 expression in embryonic heart endothelial cells from CHD fetuses. Using a conditional knock-in model, we showed that increased miR-187 levels in embryonic endothelial cells induce CHD in homozygous fetal mice, closely mirroring human CHD. Mechanistically, miR-187 targets NIPBL, which is responsible for recruiting the cohesin complex and facilitating chromatin accessibility. Consequently, the endothelial cell-specific upregulation of miR-187 inhibited NIPBL, leading to reduced chromatin accessibility and impaired gene expression, which hindered endothelial cell development and ultimately caused heart septal defects and reduced heart size both in vitro and in vivo. Importantly, exogenous miR-187 expression in human cardiac organoids mimicked developmental defects in the cardiac endothelial cells, reversible by NIPBL replenishment. Our findings establish the miR-187/NIPBL axis as a potent regulator that inhibits cardiac endothelial cell development by attenuating the transcription of numerous endothelial genes, with our mouse and human cardiac organoid models effectively replicating severe defects from minor perturbations. This discovery suggests that targeting the miR-187/NIPBL pathway could offer a promising therapeutic approach for CHD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
microRNA-187的升高会导致心脏内皮发育不良,从而通过抑制NIPBL促进先天性心脏病的发生。
心脏内皮细胞对心脏的发育至关重要,这一过程的破坏可导致先天性心脏病(CHD)。然而,miRNA 如何影响 CHD 中的心脏内皮细胞仍不清楚。本研究发现,CHD 胎儿的胚胎心脏内皮细胞中 miR-187 表达升高。利用条件性基因敲入模型,我们发现胚胎内皮细胞中 miR-187 水平的升高会诱发同基因胎鼠的 CHD,这与人类 CHD 非常相似。从机理上讲,miR-187靶向NIPBL,而NIPBL负责招募粘合素复合物并促进染色质的可及性。因此,内皮细胞特异性上调 miR-187 会抑制 NIPBL,导致染色质可及性降低和基因表达受损,从而阻碍内皮细胞发育,最终导致体外和体内心脏室间隔缺损和心脏体积缩小。重要的是,人心脏器官组织中外源性 miR-187 的表达模拟了心脏内皮细胞的发育缺陷,这种缺陷可通过 NIPBL 的补充而逆转。我们的研究结果证实,miR-187/NIPBL 轴是一种有效的调节因子,它通过抑制许多内皮细胞基因的转录来抑制心脏内皮细胞的发育。这一发现表明,以 miR-187/NIPBL 通路为靶点可为冠心病提供一种前景广阔的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. Assessing advances in three decades of clinical antiretroviral therapy on the HIV-1 reservoir. Structural characterization of human monoclonal antibodies targeting uncommon antigenic sites on spike glycoprotein of SARS-CoV. AAV9/SLC6A1 gene therapy rescues abnormal EEG patterns and cognitive behavioral deficiencies in Slc6a1-/- mice. Beclin 1 prevents ISG15-mediated cytokine storms to secure fetal hematopoiesis and survival.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1