Kai Ito, Mugino O Kubo, Ryo Kodera, Sei-Ichiro Takeda, Hideki Endo
{"title":"Quantitative assessment of masticatory muscles based on skull muscle attachment areas in Carnivora.","authors":"Kai Ito, Mugino O Kubo, Ryo Kodera, Sei-Ichiro Takeda, Hideki Endo","doi":"10.1002/ar.25599","DOIUrl":null,"url":null,"abstract":"<p><p>Masticatory muscles are composed of the temporalis, masseter, and pterygoid muscles in mammals. Each muscle has a different origin on the skull and insertion on the mandible; thus, all masticatory muscles contract in different directions. Collecting in vivo data and directly measuring the masticatory muscles anatomically in various Carnivora species is practically problematic. This is because some carnivorans can be ferocious, rare, or even extinct. Consequently, the most practical method to collect data on the force generated by the masticatory muscle is to estimate the force based on skulls. The physiological cross-sectional area (PCSA) of each masticatory muscle, which correlates to the maximum force that can be produced by a muscle, was quantified. Using computed tomography, we defined the three-dimensional measurement area for 32 carnivoran species based on the origin and insertion of masticatory muscles specified by observable crests, ridges, and scars. Subsequent allometric analysis relating the measurement area on skull surface to the PCSA for each masticatory muscle measured in fresh specimens revealed a strong correlation between the two variables. This finding indicates that within Carnivora, an estimation of absolute masticatory muscle PCSA can be derived from measurements area on skull surface. This method allows for the use of cranial specimens, housed in museums and research institutions, that lack preserved masticatory muscles in quantitative studies involving masticatory muscle PCSA. This approach facilitates comprehensive discussions on the masticatory muscle morphology of Carnivora, including rare and extinct species.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25599","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Masticatory muscles are composed of the temporalis, masseter, and pterygoid muscles in mammals. Each muscle has a different origin on the skull and insertion on the mandible; thus, all masticatory muscles contract in different directions. Collecting in vivo data and directly measuring the masticatory muscles anatomically in various Carnivora species is practically problematic. This is because some carnivorans can be ferocious, rare, or even extinct. Consequently, the most practical method to collect data on the force generated by the masticatory muscle is to estimate the force based on skulls. The physiological cross-sectional area (PCSA) of each masticatory muscle, which correlates to the maximum force that can be produced by a muscle, was quantified. Using computed tomography, we defined the three-dimensional measurement area for 32 carnivoran species based on the origin and insertion of masticatory muscles specified by observable crests, ridges, and scars. Subsequent allometric analysis relating the measurement area on skull surface to the PCSA for each masticatory muscle measured in fresh specimens revealed a strong correlation between the two variables. This finding indicates that within Carnivora, an estimation of absolute masticatory muscle PCSA can be derived from measurements area on skull surface. This method allows for the use of cranial specimens, housed in museums and research institutions, that lack preserved masticatory muscles in quantitative studies involving masticatory muscle PCSA. This approach facilitates comprehensive discussions on the masticatory muscle morphology of Carnivora, including rare and extinct species.