{"title":"ELAVL1-dependent SOAT2 exacerbated the pancreatitis-like cellular injury of AR42J cells induced by hyperstimulation with caerulein.","authors":"Yu-Jing Sun, Hua-Ying Chen, Xiao-Qin Lai","doi":"10.1002/kjm2.12911","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatitis is a severe inflammatory condition characterized by damage to the pancreas. Sterol o-acyltransferase 2 (SOAT2) has been reported to aggravate acute pancreatitis, however, the underlying mechanism remains to be elucidated. Rat pancreatic exocrine cells (AR42J) were treated with caerulein to induce pancreatitis-like cellular injury. Cell viability was determined using a cell counting kit-8 (CCK-8) assay, while cell proliferation was analyzed through a 5-Ethynyl-2'-deoxyuridine assay. Cell apoptosis was measured using flow cytometry, and enzyme-linked immunosorbent assays were performed to detect levels of pro-inflammatory cytokines IL-6 and TNF-α. Additionally, Fe<sup>2+</sup> levels were analyzed using a colorimetric assay kit, reactive oxygen species (ROS) levels were assessed with a Cellular ROS Assay kit, and lipid peroxidation was measured using a malondialdehyde assay kit. Glutathione levels were analyzed with a detection assay. Protein and mRNA expression were evaluated through western blotting and quantitative real-time polymerase chain reaction, respectively. Furthermore, an RNA immunoprecipitation assay was conducted to investigate the association between ELAV-like RNA binding protein 1 (ELAVL1) and SOAT2. Actinomycin D assay was performed to explore the effect of ELAVL1 depletion on the transcript stability of SOAT2 mRNA. SOAT2 and ELAVL1 expression were upregulated in caerulein-exposed AR42J cells. Caerulein treatment induced pancreatitis-like cellular apoptosis, inflammatory response, ferroptosis, and cell proliferation inhibition. Silencing of SOAT2 protected against caerulein-induced AR42J cell injury. Moreover, ELAVL1 stabilized SOAT2 mRNA expression in AR42J cells. SOAT2 overexpression attenuated the effects induced by ELAVL1 silencing in caerulein-exposed AR42J cells. Additionally, ELAVL1 knockdown activated the NRF2/HO-1 pathway by downregulating SOAT2 expression in caerulein-exposed AR42J cells. SOAT2 silencing protected AR42J cells from caerulein-induced injury by inactivating the NRF2 pathway. In conclusion, ELAVL1-dependent SOAT2 exacerbated pancreatic exocrine cell injury by inactivating the NRF2/HO-1 pathway in pancreatitis. These findings provide new insights into the molecular mechanisms underlying pancreatitis and offer potential therapeutic targets for the treatment of this condition.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":" ","pages":"e12911"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kaohsiung journal of medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/kjm2.12911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatitis is a severe inflammatory condition characterized by damage to the pancreas. Sterol o-acyltransferase 2 (SOAT2) has been reported to aggravate acute pancreatitis, however, the underlying mechanism remains to be elucidated. Rat pancreatic exocrine cells (AR42J) were treated with caerulein to induce pancreatitis-like cellular injury. Cell viability was determined using a cell counting kit-8 (CCK-8) assay, while cell proliferation was analyzed through a 5-Ethynyl-2'-deoxyuridine assay. Cell apoptosis was measured using flow cytometry, and enzyme-linked immunosorbent assays were performed to detect levels of pro-inflammatory cytokines IL-6 and TNF-α. Additionally, Fe2+ levels were analyzed using a colorimetric assay kit, reactive oxygen species (ROS) levels were assessed with a Cellular ROS Assay kit, and lipid peroxidation was measured using a malondialdehyde assay kit. Glutathione levels were analyzed with a detection assay. Protein and mRNA expression were evaluated through western blotting and quantitative real-time polymerase chain reaction, respectively. Furthermore, an RNA immunoprecipitation assay was conducted to investigate the association between ELAV-like RNA binding protein 1 (ELAVL1) and SOAT2. Actinomycin D assay was performed to explore the effect of ELAVL1 depletion on the transcript stability of SOAT2 mRNA. SOAT2 and ELAVL1 expression were upregulated in caerulein-exposed AR42J cells. Caerulein treatment induced pancreatitis-like cellular apoptosis, inflammatory response, ferroptosis, and cell proliferation inhibition. Silencing of SOAT2 protected against caerulein-induced AR42J cell injury. Moreover, ELAVL1 stabilized SOAT2 mRNA expression in AR42J cells. SOAT2 overexpression attenuated the effects induced by ELAVL1 silencing in caerulein-exposed AR42J cells. Additionally, ELAVL1 knockdown activated the NRF2/HO-1 pathway by downregulating SOAT2 expression in caerulein-exposed AR42J cells. SOAT2 silencing protected AR42J cells from caerulein-induced injury by inactivating the NRF2 pathway. In conclusion, ELAVL1-dependent SOAT2 exacerbated pancreatic exocrine cell injury by inactivating the NRF2/HO-1 pathway in pancreatitis. These findings provide new insights into the molecular mechanisms underlying pancreatitis and offer potential therapeutic targets for the treatment of this condition.