{"title":"Reaction and microstructure development of one-part geopolymer for wellbore applications – An experimental and numerical study","authors":"Mayank Gupta , Xiujiao Qiu , Mohamed Omran , Yun Chen , Mahmoud Khalifeh , Guang Ye","doi":"10.1016/j.cemconres.2024.107738","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the numerical modeling of the reaction and microstructure development of a one-part granite-based geopolymer, which is often used for carbon capture and storage (CCS) applications. This work extends the capabilities of GeoMicro3D to model one-part geopolymers containing different precursors and activators (solid and in solution). The model considers the particle size distribution of different solids and the real shape of particles to prepare the initial simulation domain. Further, the dissolution rates of different solids estimated from the experiments were used to model the dissolution of different elements in the pore solution. Subsequently, the model utilizes classical nucleation probability modeling coupled with thermodynamic modeling to estimate the precipitation of products in the microstructure. Experiments were performed to study the pore solution, reaction degree, and amount of products in the microstructure, which were further compared with the simulation results to check the rationality of the model.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"188 ","pages":"Article 107738"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624003193","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the numerical modeling of the reaction and microstructure development of a one-part granite-based geopolymer, which is often used for carbon capture and storage (CCS) applications. This work extends the capabilities of GeoMicro3D to model one-part geopolymers containing different precursors and activators (solid and in solution). The model considers the particle size distribution of different solids and the real shape of particles to prepare the initial simulation domain. Further, the dissolution rates of different solids estimated from the experiments were used to model the dissolution of different elements in the pore solution. Subsequently, the model utilizes classical nucleation probability modeling coupled with thermodynamic modeling to estimate the precipitation of products in the microstructure. Experiments were performed to study the pore solution, reaction degree, and amount of products in the microstructure, which were further compared with the simulation results to check the rationality of the model.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.