{"title":"Constructing quantum codes from any classical code and their embedding in ground space of local Hamiltonians","authors":"Ramis Movassagh, Yingkai Ouyang","doi":"10.22331/q-2024-11-27-1541","DOIUrl":null,"url":null,"abstract":"Implementing robust quantum error correction (QEC) is imperative for harnessing the promise of quantum technologies. We introduce a framework that takes $any$ classical code and explicitly constructs the corresponding QEC code. Our framework can be seen to generalize the CSS codes, and goes beyond the stabilizer formalism (Fig. 1). A concrete advantage is that the desirable properties of a classical code are automatically incorporated in the design of the resulting quantum code. We reify the theory by various illustrations some of which outperform the best previous constructions. We then introduce a local quantum spin-chain Hamiltonian whose ground space we analytically completely characterize. We utilize our framework to demonstrate that the ground space contains explicit quantum codes with linear distance. This side-steps the Bravyi-Terhal no-go theorem.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"16 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-27-1541","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implementing robust quantum error correction (QEC) is imperative for harnessing the promise of quantum technologies. We introduce a framework that takes $any$ classical code and explicitly constructs the corresponding QEC code. Our framework can be seen to generalize the CSS codes, and goes beyond the stabilizer formalism (Fig. 1). A concrete advantage is that the desirable properties of a classical code are automatically incorporated in the design of the resulting quantum code. We reify the theory by various illustrations some of which outperform the best previous constructions. We then introduce a local quantum spin-chain Hamiltonian whose ground space we analytically completely characterize. We utilize our framework to demonstrate that the ground space contains explicit quantum codes with linear distance. This side-steps the Bravyi-Terhal no-go theorem.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.