An energy stable bound-preserving finite volume scheme for the Allen-Cahn equation based on operator splitting method

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2024-11-26 DOI:10.1016/j.camwa.2024.11.014
Gang Peng, Yuan Li
{"title":"An energy stable bound-preserving finite volume scheme for the Allen-Cahn equation based on operator splitting method","authors":"Gang Peng, Yuan Li","doi":"10.1016/j.camwa.2024.11.014","DOIUrl":null,"url":null,"abstract":"In this paper, an energy stable bound-preserving finite volume scheme is constructed for the Allen-Cahn equation. The first-order operator splitting method is used to split the original equation into a nonlinear equation and a heat equation in each time interval. The nonlinear equation is solved by the explicit scheme, and the heat equation is discretized by the extremum-preserving scheme. The harmonic averaging points on cell facets are employed to define auxiliary unknowns, which enable our discrete scheme to be applicable to unstructured meshes. The energy stable and bound-preserving analysis of the finite volume scheme are also presented. Numerical experiments illustrate that this linear numerical scheme is practical and accurate in solving the Allen-Cahn equation.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"44 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.11.014","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an energy stable bound-preserving finite volume scheme is constructed for the Allen-Cahn equation. The first-order operator splitting method is used to split the original equation into a nonlinear equation and a heat equation in each time interval. The nonlinear equation is solved by the explicit scheme, and the heat equation is discretized by the extremum-preserving scheme. The harmonic averaging points on cell facets are employed to define auxiliary unknowns, which enable our discrete scheme to be applicable to unstructured meshes. The energy stable and bound-preserving analysis of the finite volume scheme are also presented. Numerical experiments illustrate that this linear numerical scheme is practical and accurate in solving the Allen-Cahn equation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Static and vibration analyses of laminated conical shells under various boundary conditions using a modified scaled boundary finite element method An energy stable bound-preserving finite volume scheme for the Allen-Cahn equation based on operator splitting method The simplified weak Galerkin method with θ scheme and its reduced-order model for the elastodynamic problem on polygonal mesh Numerical analysis and simulation of a quasistatic frictional bilateral contact problem with damage, long-term memory and wear A subspace method based on the Neumann series for the solution of parametric linear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1