{"title":"Convenient synthesis of O-alkylated/N-acylated polyhydroxyazepane based compounds for modulating MD-2-TLR4 complex formation","authors":"Sumit , Sudipta Nandi , Indrapal Singh Aidhen","doi":"10.1016/j.tetlet.2024.155388","DOIUrl":null,"url":null,"abstract":"<div><div>Toll-like receptor 4 (TLR4) is a critical component of the innate immune system, recognizing lipopolysaccharide (LPS) from Gram-negative bacteria and triggering immune responses. The activation of TLR4 involves several key steps, including interactions with LPS-binding protein (LBP), CD14, and myeloid differentiation protein 2 (MD-2), culminating in the formation of the (LPS.MD-2 TLR4)<sub>2</sub> complex. Structural insights show that LPS acyl chains insert into the hydrophobic pocket of MD-2, driving TLR4 activation. Inspired by this understanding, numerous natural and synthetic compounds have been developed to inhibit TLR4 by targeting the MD-2/TLR4 complex. Eritoran <strong>1</strong>, is one such illustration. The conformational flexibility of azepane architecture inspired us to visualize <em>O</em>-alkylated/<em>N</em>-acylated polyhydroxyazepane-based compounds toward this objective. The docking studies and molecular simulation studies supported the rationale. Synthesis of <em>O</em>-alkylated/<em>N</em>-acylated polyhydroxyazepane-based compounds <strong>2</strong>-<strong>4</strong> (<strong>a</strong>-<strong>h</strong>) through a key building block is described herein.</div></div>","PeriodicalId":438,"journal":{"name":"Tetrahedron Letters","volume":"154 ","pages":"Article 155388"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040403924004830","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Toll-like receptor 4 (TLR4) is a critical component of the innate immune system, recognizing lipopolysaccharide (LPS) from Gram-negative bacteria and triggering immune responses. The activation of TLR4 involves several key steps, including interactions with LPS-binding protein (LBP), CD14, and myeloid differentiation protein 2 (MD-2), culminating in the formation of the (LPS.MD-2 TLR4)2 complex. Structural insights show that LPS acyl chains insert into the hydrophobic pocket of MD-2, driving TLR4 activation. Inspired by this understanding, numerous natural and synthetic compounds have been developed to inhibit TLR4 by targeting the MD-2/TLR4 complex. Eritoran 1, is one such illustration. The conformational flexibility of azepane architecture inspired us to visualize O-alkylated/N-acylated polyhydroxyazepane-based compounds toward this objective. The docking studies and molecular simulation studies supported the rationale. Synthesis of O-alkylated/N-acylated polyhydroxyazepane-based compounds 2-4 (a-h) through a key building block is described herein.
期刊介绍:
Tetrahedron Letters provides maximum dissemination of outstanding developments in organic chemistry. The journal is published weekly and covers developments in techniques, structures, methods and conclusions in experimental and theoretical organic chemistry. Rapid publication of timely and significant research results enables researchers from all over the world to transmit quickly their new contributions to large, international audiences.