{"title":"On causality and its violation in f(R,Lm,T) gravity","authors":"J.S. Gonçalves, A.F. Santos","doi":"10.1016/j.nuclphysb.2024.116751","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><mi>T</mi><mo>)</mo></math></span> gravity is considered. It is a generalization of the theories <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>T</mi><mo>)</mo></math></span> and <span><math><mi>f</mi><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span>. This modified theory of gravity exhibits strong geometry-matter coupling. The problem of causality and its violation is verified in this model. Such analysis is carried out using Gödel-type solutions considering different types of matter. It is shown that this model allows both causal and non-causal solutions. These solutions depend directly on the content of matter present in the universe. For the non-causal solution, a critical radius is calculated, beyond which causality is violated. Taking different matter contents, an infinite critical radius emerges that leads to a causal solution. To obtain a causal solution, a natural relationship arises between the parameters of the theory.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1010 ","pages":"Article 116751"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324003171","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, gravity is considered. It is a generalization of the theories and . This modified theory of gravity exhibits strong geometry-matter coupling. The problem of causality and its violation is verified in this model. Such analysis is carried out using Gödel-type solutions considering different types of matter. It is shown that this model allows both causal and non-causal solutions. These solutions depend directly on the content of matter present in the universe. For the non-causal solution, a critical radius is calculated, beyond which causality is violated. Taking different matter contents, an infinite critical radius emerges that leads to a causal solution. To obtain a causal solution, a natural relationship arises between the parameters of the theory.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.