CdS nanorods embedded in ZnIn2S4 nanosheets to construct n-n heterojunction for ultrahigh photocatalytic H2 and H2O2 production

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2024-11-16 DOI:10.1016/j.colsurfa.2024.135774
Ze Du , Jianmei Pan , Chengfei Ma , Yi Guan , Maoxin Sun , Zimo Gao , Hua Tang , Xuehua Yan
{"title":"CdS nanorods embedded in ZnIn2S4 nanosheets to construct n-n heterojunction for ultrahigh photocatalytic H2 and H2O2 production","authors":"Ze Du ,&nbsp;Jianmei Pan ,&nbsp;Chengfei Ma ,&nbsp;Yi Guan ,&nbsp;Maoxin Sun ,&nbsp;Zimo Gao ,&nbsp;Hua Tang ,&nbsp;Xuehua Yan","doi":"10.1016/j.colsurfa.2024.135774","DOIUrl":null,"url":null,"abstract":"<div><div>A series of n-n type CdS/ZnIn<sub>2</sub>S<sub>4</sub> photocatalysts with type-Ⅱ path were designed by building embedded interface to obtain ultrahigh photocatalytic performance. The CdS nanorods were equably embedded in ZnIn<sub>2</sub>S<sub>4</sub> nanosheets to form the one-dimensional/two-dimensional (1D/2D) heterostructure by a two-step synthesis method. Under the illumination of a 420 nm LED lamp, CdS/ZnIn<sub>2</sub>S<sub>4</sub> exhibits the optimal photocatalytic hydrogen production rate (33.3 mmol g<sup>−1</sup> h<sup>−1</sup>), which is 4.8 times that of pure ZnIn<sub>2</sub>S<sub>4</sub>. CdS/ZnIn<sub>2</sub>S<sub>4</sub> also displays the best photocatalytic H<sub>2</sub>O<sub>2</sub> production rate (1.36 mmol L<sup>−1</sup> h<sup>−1</sup>), which is 2.3 times higher than pure CdS and 3.8 times higher than pure ZnIn<sub>2</sub>S<sub>4</sub>. Moreover, it exhibits extremely high apparent quantum efficiency (31.71 % at 420 nm) for hydrogen production. This enhanced photocatalytic performance can be attributed to the construction of n-n type heterojunction with built-in electric field action, 1D/2D embedded interface and type-Ⅱ transfer path of photon-generated carriers, which can efficiently improve the light absorption ability, accelerate the spatial separation and transfer of carriers, and provide more active sites for H<sup>+</sup> reduction to H<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"706 ","pages":"Article 135774"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775724026384","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of n-n type CdS/ZnIn2S4 photocatalysts with type-Ⅱ path were designed by building embedded interface to obtain ultrahigh photocatalytic performance. The CdS nanorods were equably embedded in ZnIn2S4 nanosheets to form the one-dimensional/two-dimensional (1D/2D) heterostructure by a two-step synthesis method. Under the illumination of a 420 nm LED lamp, CdS/ZnIn2S4 exhibits the optimal photocatalytic hydrogen production rate (33.3 mmol g−1 h−1), which is 4.8 times that of pure ZnIn2S4. CdS/ZnIn2S4 also displays the best photocatalytic H2O2 production rate (1.36 mmol L−1 h−1), which is 2.3 times higher than pure CdS and 3.8 times higher than pure ZnIn2S4. Moreover, it exhibits extremely high apparent quantum efficiency (31.71 % at 420 nm) for hydrogen production. This enhanced photocatalytic performance can be attributed to the construction of n-n type heterojunction with built-in electric field action, 1D/2D embedded interface and type-Ⅱ transfer path of photon-generated carriers, which can efficiently improve the light absorption ability, accelerate the spatial separation and transfer of carriers, and provide more active sites for H+ reduction to H2 and H2O2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入 ZnIn2S4 纳米片的 CdS 纳米棒构建 n-n 异质结,用于超高光催化产生 H2 和 H2O2
通过构建嵌入界面,设计了一系列具有Ⅱ型路径的n-n型CdS/ZnIn2S4光催化剂,以获得超高的光催化性能。通过两步合成法将 CdS 纳米棒等比例嵌入 ZnIn2S4 纳米片,形成一维/二维(1D/2D)异质结构。在 420 纳米 LED 灯的照射下,CdS/ZnIn2S4 表现出最佳的光催化产氢率(33.3 mmol g-1 h-1),是纯 ZnIn2S4 的 4.8 倍。CdS/ZnIn2S4 还显示出最佳的光催化 H2O2 生成率(1.36 mmol L-1 h-1),是纯 CdS 的 2.3 倍,纯 ZnIn2S4 的 3.8 倍。此外,它还表现出极高的制氢表观量子效率(420 纳米波长下为 31.71%)。这种增强的光催化性能可归功于 n-n 型异质结的构建,该异质结具有内置电场作用、1D/2D 嵌入界面和光子产生的载流子的Ⅱ型转移路径,可有效提高光吸收能力,加速载流子的空间分离和转移,并为 H+ 还原成 H2 和 H2O2 提供更多的活性位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Study on improving the performance of engineered cement-based composites by modifying binder system and polyethylene fiber/matrix interface Toxic gas molecules adsorbed on the original and metal-doped two-dimensional s-C3N4: A first-principles investigation Unveiling molecular alignment, dielectric and electrical conductivity of an unaligned 4-octyl-4′-cyanobiphenyl liquid crystal doped with carbon dots Crown-grafted loose nanofiltration membranes for the recovery of brine resources: Insights from molecular dynamics simulations A first principles study of BiSb monolayer: A novel gas sensor for robotic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1