Automatic segmentation of prostate and organs at risk in CT images using an encoder–decoder structure based on residual neural network

IF 4.9 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biomedical Signal Processing and Control Pub Date : 2024-11-27 DOI:10.1016/j.bspc.2024.107234
Silvia M. Gutiérrez-Ramos , Miguel Altuve
{"title":"Automatic segmentation of prostate and organs at risk in CT images using an encoder–decoder structure based on residual neural network","authors":"Silvia M. Gutiérrez-Ramos ,&nbsp;Miguel Altuve","doi":"10.1016/j.bspc.2024.107234","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate segmentation of the prostate and surrounding organs at risk (OARs) from CT scans is critical for radiotherapy treatment planning in prostate cancer. However, manual segmentation is time-consuming and prone to variability. This paper proposes a deep learning-based approach using a pre-trained ResNet-18 combined with an encoder–decoder structure based on DeepLabv3+. The method automates the segmentation of the prostate, bladder, and rectum in male pelvic CT scans, achieving precise and efficient results without requiring preprocessing or extensive manual refinement. Evaluated on 100 CT scans using 10-fold cross-validation, the model demonstrates strong performance (Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD)) on prostate (DSC: <span><math><mrow><mn>84</mn><mo>.</mo><mn>32</mn><mo>±</mo><mn>4</mn><mo>.</mo><mn>88</mn><mtext>%</mtext></mrow></math></span>, HD: <span><math><mrow><mn>3</mn><mo>.</mo><mn>95</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>60</mn><mspace></mspace><mi>mm</mi></mrow></math></span>), bladder (DSC: <span><math><mrow><mn>86</mn><mo>.</mo><mn>53</mn><mo>±</mo><mn>3</mn><mo>.</mo><mn>66</mn><mtext>%</mtext></mrow></math></span>, HD: <span><math><mrow><mn>4</mn><mo>.</mo><mn>58</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>72</mn><mspace></mspace><mi>mm</mi></mrow></math></span>), and rectum (DSC: <span><math><mrow><mn>83</mn><mo>.</mo><mn>92</mn><mo>±</mo><mn>4</mn><mo>.</mo><mn>18</mn><mtext>%</mtext></mrow></math></span>, HD: <span><math><mrow><mn>2</mn><mo>.</mo><mn>99</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>40</mn><mspace></mspace><mi>mm</mi></mrow></math></span>) segmentation. Additionally, a user-friendly MATLAB application is developed to automate the segmentation process. This approach has the potential to improve treatment planning efficiency, accuracy, and consistency for better patient outcomes.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"101 ","pages":"Article 107234"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424012928","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of the prostate and surrounding organs at risk (OARs) from CT scans is critical for radiotherapy treatment planning in prostate cancer. However, manual segmentation is time-consuming and prone to variability. This paper proposes a deep learning-based approach using a pre-trained ResNet-18 combined with an encoder–decoder structure based on DeepLabv3+. The method automates the segmentation of the prostate, bladder, and rectum in male pelvic CT scans, achieving precise and efficient results without requiring preprocessing or extensive manual refinement. Evaluated on 100 CT scans using 10-fold cross-validation, the model demonstrates strong performance (Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD)) on prostate (DSC: 84.32±4.88%, HD: 3.95±0.60mm), bladder (DSC: 86.53±3.66%, HD: 4.58±0.72mm), and rectum (DSC: 83.92±4.18%, HD: 2.99±0.40mm) segmentation. Additionally, a user-friendly MATLAB application is developed to automate the segmentation process. This approach has the potential to improve treatment planning efficiency, accuracy, and consistency for better patient outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于残差神经网络的编码器-解码器结构自动分割 CT 图像中的前列腺和危险器官
从 CT 扫描中准确分割前列腺和周围危险器官(OAR)对于前列腺癌的放疗计划至关重要。然而,人工分割既耗时又容易产生变异。本文提出了一种基于深度学习的方法,使用预训练的 ResNet-18 与基于 DeepLabv3+ 的编码器-解码器结构相结合。该方法可自动分割男性盆腔 CT 扫描中的前列腺、膀胱和直肠,无需预处理或大量人工细化即可获得精确高效的结果。该模型使用 10 倍交叉验证对 100 张 CT 扫描进行了评估,在前列腺(DSC:84.32±4.88%,HD:3.95±0.60mm)、膀胱(DSC:86.53±3.66%,HD:4.58±0.72mm)和直肠(DSC:83.92±4.18%,HD:2.99±0.40mm)的分割。此外,还开发了一个用户友好型 MATLAB 应用程序,以实现分割过程的自动化。这种方法有望提高治疗计划的效率、准确性和一致性,从而为患者带来更好的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Signal Processing and Control
Biomedical Signal Processing and Control 工程技术-工程:生物医学
CiteScore
9.80
自引率
13.70%
发文量
822
审稿时长
4 months
期刊介绍: Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management. Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.
期刊最新文献
PDCA-Net: Parallel dual-channel attention network for polyp segmentation An efficient vision transformer for Alzheimer’s disease classification using magnetic resonance images SLP-Net:An efficient lightweight network for segmentation of skin lesions Automatic segmentation of prostate and organs at risk in CT images using an encoder–decoder structure based on residual neural network A proposal-level class-aware graph convolutional network and memory bank for thyroid nodule detection in ultrasound videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1