Hyun Hee Rhee , Min Kyung Lee , Yeong Bae Seong , Sunghan Kim , Jae Il Lee , Kyu-Cheul Yoo , Byung Yong Yu
{"title":"Glaciovolcanic processes between the Campbell Glacier and Mt. Melbourne Volcano, Antarctica: ICE and FIRE","authors":"Hyun Hee Rhee , Min Kyung Lee , Yeong Bae Seong , Sunghan Kim , Jae Il Lee , Kyu-Cheul Yoo , Byung Yong Yu","doi":"10.1016/j.palaeo.2024.112611","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the glacial dynamics of the Campbell Glacier in Terra Nova Bay (TNB), Antarctica, with a focus on its unique lowering patterns during the late Quaternary. Using cosmogenic nuclides (<sup>10</sup>Be) surface exposure dating, we provide significant chronological constraints on Antarctic terrestrial glacier changes. In addition to the previous data on Marine Isotope Stage (MIS) 5 simple exposure ages of Campbell Glacier moraines, we further analyzed the palaeo-subglaciated bedrock, which yields exposure ages during MIS 3 and 2 (49.8–28.5 ka). Our analysis empowers that continuous glacial lowering occurred throughout the late Quaternary, even during the Last Glacial Period (MIS 4–2), and that the Local Last Glacial Maximum (LLGM) occurred at 150–90 masl during MIS 4 rather than MIS 2. This new and recalculated dataset for the Campbell Glacier is unique compared to other outlet glaciers flowing into the Terra Nova Bay, highlighting the significant influence of Mt. Melbourne's volcanic activity via glaciovolcanic processes during the late Quaternary, beyond general climatic and oceanic factors. Further studies of palaeo-glaciovolcanic interactions on the East Antarctic Ice Sheet (EAIS) promise to provide more robust insights for refining models predicting future accelerated glacial melt and sea level rise, particularly considering the numerous volcanoes beneath the West Antarctic Ice Sheet (WAIS).</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"657 ","pages":"Article 112611"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003101822400600X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the glacial dynamics of the Campbell Glacier in Terra Nova Bay (TNB), Antarctica, with a focus on its unique lowering patterns during the late Quaternary. Using cosmogenic nuclides (10Be) surface exposure dating, we provide significant chronological constraints on Antarctic terrestrial glacier changes. In addition to the previous data on Marine Isotope Stage (MIS) 5 simple exposure ages of Campbell Glacier moraines, we further analyzed the palaeo-subglaciated bedrock, which yields exposure ages during MIS 3 and 2 (49.8–28.5 ka). Our analysis empowers that continuous glacial lowering occurred throughout the late Quaternary, even during the Last Glacial Period (MIS 4–2), and that the Local Last Glacial Maximum (LLGM) occurred at 150–90 masl during MIS 4 rather than MIS 2. This new and recalculated dataset for the Campbell Glacier is unique compared to other outlet glaciers flowing into the Terra Nova Bay, highlighting the significant influence of Mt. Melbourne's volcanic activity via glaciovolcanic processes during the late Quaternary, beyond general climatic and oceanic factors. Further studies of palaeo-glaciovolcanic interactions on the East Antarctic Ice Sheet (EAIS) promise to provide more robust insights for refining models predicting future accelerated glacial melt and sea level rise, particularly considering the numerous volcanoes beneath the West Antarctic Ice Sheet (WAIS).
期刊介绍:
Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations.
By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.